Java语言实例-毕业设计项目:基于springboot的小区物业管理系统
随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势;对于小区物业管理系统当然也不能排除在外,随着网络技术的不断成熟,带动了小区物业管理系统,它彻底改变了过去传统的管理方式,不仅使服务管理难度变低了,还提升了管理的灵活性。这种个性化的平台特别注重交互协调与管理的相互配合,激发了管理人员的创造性与主动性,对小区物业管理系统而言非常有利。
本系统采用的数据库是Mysql,使用SpringBoot框架开发,运行环境使用Tomcat服务器,ECLIPSE 是本系统的开发平台。在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。
Python语言实例-课程设计项目:地震灾害20年数据分析项目(源码+报告)
数据来源:国家统计局
技术栈:python,pandas,matplotlib,seaborn
内容:包含源码,数据分析报告
用途:可用作数据分析课程设计,课程报告的学习资料
Python语言实例-课程设计项目:五大城市空气质量对比及PM2.5分析报告
基于python的,pandas+matplotlib+seaborn的数据分析报告
本资源详细记录了五大城市(北京、上海、成都、广州、沈阳)空气质量数据的清洗、分析与可视化过程,涵盖从 AQI 标准解析到 PM2.5 数据的月均与日均值分析。适合数据分析、环境科学和 Python 可视化初学者及相关从业者学习。
内容概要:提供完整的实验步骤、数据处理方法、数据可视化技术及污染状态分析,特别针对 PM2.5 指标,分城市、分时间维度展开深入探讨。
适用人群:数据分析师、环境科学研究者、Python 数据处理与可视化学习者、学生及项目实践者。
使用场景及目标:作为环境数据分析教程,用于课设报告、课程学习,期末大作业
其他说明:内容结合真实城市空气质量数据,注重实际操作及结果展示,适用于展示技术能力或充实个人项目集。
通过本资源,您将系统掌握 Python 数据处理与可视化技能,并能深入了解国内主要城市的空气质量状况!
Python语言实例-课程设计项目:基于pyecharst的房价可视化大屏(代码+可视化大屏)
pandas,pyecharts
内容概要
本代码实现了一个基于房地产数据的多维度可视化大屏项目,使用 pandas 处理数据,并通过 pyecharts 创建交互式图表。项目涵盖房源分布、建筑面积与价格关系、装修类别占比、各小区平均房价、容积率与价格的关系以及建筑年代的价格趋势等核心指标,最终生成可交互的HTML页面,展示一个完整的可视化结果。
使用人群
学生和教师:适用于数据分析课程的教学或课设项目展示。
房地产从业者:帮助房产公司或市场分析人员更直观地了解房产数据的区域分布和价格趋势。
数据分析爱好者:适用于学习和实践数据清洗、分析及可视化技术的初学者或爱好者。
使用场景及目标
课程设计项目:展示数据分析和可视化的综合能力,满足课程要求。
房地产市场分析:用于内部报告或客户展示,快速了解市场分布及价格趋势。
教学和演示:作为 pandas 和 pyecharts 的应用案例,展示从数据处理到多维可视化的完整流程。
生成的图表类型:
饼图:各区房源数量分布、装修类别占比
散点图:建筑面积与总价关系
条形图:各小区平均房价
折线图:容积率与平均价格、建筑年代与平均价格的趋势
豆瓣网站多类别爬虫脚本合集
基于 Python 编写,使用 Requests、lxml、BeautifulSoup、Pandas 等常见的爬虫与数据处理库
包含的内容:
豆瓣电影 Top250 爬取脚本
功能:抓取豆瓣电影 Top250 的相关信息(如标题、评分、评价人数、电影详情等)。
用途:分析电影评分趋势、评价数量分布、电影详情汇总等。
豆瓣图书 Top250 爬取脚本
功能:获取小说类豆瓣图书的标题、作者、出版社、出版日期、评分及评价人数等详细信息。
用途:分析书籍受欢迎程度、推荐榜单、出版趋势等。
豆瓣音乐 Top250 爬取脚本
功能:抓取音乐信息,包括名称、评分、流派、表演者及简介。
用途:音乐流派分析、用户偏好研究等。
豆瓣影评爬取脚本
功能:抓取指定电影的影评内容,包括作者、评分、标题、影评正文及互动数据(如点赞数、回复数等)。
用途:影评情感分析、用户互动数据研究等。
豆瓣小组讨论帖子爬取脚本
功能:抓取小组讨论的帖子标题、作者、回复数、发布时间及帖子内容详情。
用途:小组讨论分析、内容研究等。
python数据分析:学生校园消费行为分析(pandas+matplotlib+kmeans)
1消费行为分析
食堂就餐分析
筛选食堂数据:提取各个食堂的消费数据。
合并就餐记录:合并同一地点同一时间的就餐记录。
三餐分布:分析学生在早餐、午餐和晚餐的就餐情况,并绘制饼图。
工作日和非工作日分析:使用chinese_calendar库,分析工作日和非工作日的就餐频次,并绘制折线图。
学生消费行为
人均消费分析:计算总消费次数、总消费金额和总人数,分析人均消费次数和金额。
性别和专业分析:分析不同性别和专业的学生消费情况,绘制柱状图显示各个专业男生和女生的人均消费。
2. 聚类分析
特征构建与标准化
构建特征:包括早餐、午餐和晚餐的平均每餐消费额,以及月就餐次数。
标准化:对特征进行标准化处理,消除量纲差异。
聚类分析
确定聚类中心:使用轮廓系数法确定聚类中心数。
聚类模型构建:使用KMeans算法进行聚类分析,并将聚类标签添加到数据中。
类中心可视化:使用雷达图可视化聚类结果,展示不同学生群体的特征。
这段代码通过对校园卡消费数据的分析,揭示了学生的消费行为模式。这些分析结果可以帮助学校管理者了解学生的就餐习惯、消费特征和不同群体的消费差异,为食堂管理和服务改进提供数据支持。
javaee文章管理系统(jsp+servlet+maven+mybatis)
基于javaee文章管理系统(jsp+servlet+maven+mybatis)
文章管理系统是将文章发布和计算机网路结合起来的文章新型管理方式,是信息化社会的产物。通过网路,管理者可以发布文章提供给系统用户浏览,用户也可以发布文章提供给其他用户浏览,可以使信息传递更加快捷和方便,从而扩展信息传递领域,实现提高信息传递的效率。
该文章管理系统主要业务有:文章管理,公告管理,轮播管理,文章分类管理,评论管理,用户管理,管理员管理,系统统计,系统设置。
1)进入系统:登录到文章管理后台;
2)文章管理:添加文章,删除文章,修改文章以及对文章的分类;
3)轮播管理:轮播信息添加,删除以及修改等操作;
4)用户管理:用户部分信息的修改,禁用以及删除的操作;
5)评论管理:意境反馈的回复以及删除等操作。
环境参数 环境值
操作系统 Windows10
IDE IntelliJ IDEA 2021.2.2
数据库 MySQL8.0.22
服务器软件 Tomcat9.0.50
前端开发框架 Layui,bootstrap
后台开发框架 Spring 5.3.13,Mybatis3.5.7
美之图美女图片爬取(js逆向,request,xpath,aes加密,md5加密)
一个可以训练js逆向的项目
这段代码主要用于从网站 “https://yesmzt.com” 上抓取并下载图片。它使用了以下技术:
请求库(Requests):用于发送 HTTP 请求到网站并获取响应。
XPath 和 lxml 库:用于解析 HTML 文档并提取所需的数据。
AES 加密和解密:用于处理网站上的加密数据。这部分代码使用了 Crypto.Cipher 库中的 AES 模块和 Crypto.Util.Padding 库中的 unpad 函数。
哈希函数(Hashing):用于生成特定的密钥,这部分代码使用了 hashlib 库中的 md5 函数。
Base64 编码和解码:用于处理二进制数据,这部分代码使用了 base64 库。
代码的主要流程如下:
首先,它会获取特定页面上的所有图片 ID(get_id_list 函数)。
然后,对于每个 ID,它会发送一个请求到服务器以获取加密的图片 URL 数据(get_img_url_list 函数)。
这些加密数据会被解密(decrypt 函数),得到实际的图片 URL 列表。
最后,代码会下载每个 URL 对应的图片并保存到本地
机器学习预测商品销售额
进入数字时代后,数据的有效使用成为零售企业颠覆传统的动力,也势必将改变零售业的格局。
零售业有非常多的场景需要广泛地使用机器学习来进行数据分析,例如通过对供应链数据的分析,发现库存的规律性变化,合理优化物流环节达到减少库存、提高流通率的目的。对顾客购买数据的分析可以得到顾客的画像,从而为其个性化推荐产品。也可以发现商品的销售模式,从而灵活地调整定价或销售方式。
本案例的目的是建立一个销售预测模型,使得公司可以预测每个产品在特定商店的销售情况,从而可以提前调整物流、完善备货渠道,以较高的效率完成销售流程。
本案例利用多重机器学习算法预测销售额,包含数据和源代码,ppt
一个网络入侵用户识别的Python机器学习程序
内容概要:这段代码实现了一个网络入侵用户识别模型的训练和测试过程,使用了随机森林分类器来识别不同类型的网络入侵。模型在训练数据上进行了训练,并在测试数据上进行了评估,输出了分类报告和测试精度。
包括数据处理函数 ,模型训练和保存,模型加载和测试的一个机器学习小项目