算法导论第三版-动态规划-思考题15-4-整齐打印(Printing neatly)

该文章提供两种Java代码解法,用于解决将单词列表按特定规则排列的问题。方法优化了每行最大字符数判断,降低了空间复杂度。主要涉及字符串处理、动态规划和算法设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

题目描述

题解

来自 https://photo.codefine.site:12524/wp-content/uploads/2021/03/introduction_to_algorithms_third_edition_en.pdf

输入

7 10
word like first as the the complete

输出

36

java 版解答

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

public class PrintNeatly {

    public static void main(String[] args) throws IOException {

//        solve1();

        solve2();
    }
    
	
	//解法1 只优化每行最大字符数判断 超出floor(M/2)(单词最短为1;上取整)的单词一定放不下
	//时间复杂度 o(n^2) 空间复杂度 o(n^2)
    static void solve1() throws IOException {
        StreamTokenizer streamTokenizer = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
        PrintWriter writer = new PrintWriter(new OutputStreamWriter(System.out));

        while(streamTokenizer.nextToken() != StreamTokenizer.TT_EOF){
            int n = (int) streamTokenizer.nval;
            streamTokenizer.nextToken();
            int M = (int) streamTokenizer.nval;
            streamTokenizer.nextToken();
            String[] strings = new String[n + 1];
            int[] l = new int[n + 1];
            int[] p = new int[n + 1];
            int[] c = new int[n + 2];

            int[][] extra = new int[n + 1][n + 1];
            int[][] lc = new int[n + 1][n + 1];

            int rowMaxWord = (int)Math.floor(M * 1.0/ 2);

            for (int i = 1; i <= n; ++i){
                strings[i] = streamTokenizer.sval;
                l[i] = strings[i].length();
                if (i < n){
                    streamTokenizer.nextToken();
                }
            }

            for (int i = 1; i <= n; ++i){
                extra[i][i] = M - l[i];
                for (int j = i + 1; j <= n; ++j){
                    if (j - i + 1 <= rowMaxWord){
                        extra[i][j] = extra[i][j - 1] - l[j] - 1;
                    }
                }
            }



            for (int i = 1; i <= n; ++i){
                for (int j = i; j <= n; ++j){
                    if (j - i + 1 > rowMaxWord || extra[i][j] < 0){
                        lc[i][j] = Integer.MAX_VALUE - 10000;
                    }else if (j == n && extra[i][j] >= 0){
                        lc[i][j] = 0;
                    }else {
                        lc[i][j] = extra[i][j] * extra[i][j] * extra[i][j];
                    }
                }
            }

            c[0] = 0;
            for (int j = 1; j <= n; ++j){
                c[j] = Integer.MAX_VALUE;
                for (int i = Math.max(1, j - rowMaxWord + 1); i <= j; ++i){

                    if (c[i - 1] + lc[i][j] < c[j]){
                        c[j] = c[i - 1] + lc[i][j];
                        p[j] = i;
                    }
                }
            }

            System.out.println(c[n]);

            print(strings, p, n);
        }


    }

	//解法2 在解法1的基础上优化空间复杂度到o(n)
	//时间复杂度 o(n^2) 空间复杂度 o(n)
    static void solve2() throws IOException {
        StreamTokenizer streamTokenizer = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
        PrintWriter writer = new PrintWriter(new OutputStreamWriter(System.out));

        while(streamTokenizer.nextToken() != StreamTokenizer.TT_EOF){
            int n = (int) streamTokenizer.nval;
            streamTokenizer.nextToken();
            int M = (int) streamTokenizer.nval;
            streamTokenizer.nextToken();
            String[] strings = new String[n + 1];
            int[] l = new int[n + 1];
            int[] p = new int[n + 1];
            int[] c = new int[n + 1];
            int rowMaxWord = (int)Math.floor(M * 1.0/ 2);
            for (int i = 1; i <= n; ++i){
                strings[i] = streamTokenizer.sval;
                l[i] = strings[i].length();
                if (i < n){
                    streamTokenizer.nextToken();
                }
            }
            c[0] = 0;
            int[] lcc = new int[n + 1];
            for (int j = 1; j <= n; ++j){
                c[j] = Integer.MAX_VALUE;

                for (int i = j; i >= Math.max(1, j - rowMaxWord + 1); --i){
                    if (i == j){
                        lcc[i] = M - l[j];
                    }else{
                    //i: n->1 lc[i][j] = lc[i + 1][j] - l[i] - 1 
                    //或者 j:1->n lc[i][j] = lc[i][j - 1] - l[j] - 1
                    // 每次计算i:1->j lc[i][j] (j固定) 可优化成一维 
                        lcc[i] = lcc[i + 1] - l[i] - 1;
                    }
                }

                for (int i = Math.max(1, j - rowMaxWord + 1); i <= j; ++i){
                    if (lcc[i] < 0){
                    //-100000 防止c[i - 1] + lcc[i] 溢出
                        lcc[i] = Integer.MAX_VALUE - 100000;
                    }else if (j == n){
                        lcc[i] = 0;
                    }else{
                        lcc[i] = lcc[i] * lcc[i] * lcc[i];
                    }
                    int cost = c[i - 1] + lcc[i];
                    if (cost < c[j]){
                        c[j] = cost;
                        p[j] = i;
                    }
                }
            }
            writer.println(c[n]);

            print(strings, p, n);
        }


    }


    static int print(String[] s,int[] p, int j){
        int i = p[j];
        int row;
        if (i == 1){
            row = 1;
        }else{
            row = print(s, p ,i - 1) + 1;
        }
        for (int t = i; t <= j; ++t){
            System.out.print(s[t]);
            System.out.print(t == j ? "\n" : " ");
        }

        return row;
    }




}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值