model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dropout(0.5))
- 第一个dropout是输入层x和hidden之间的dropout,控制输入线性变换的神经元断开比例
- 第二个recurrent_dropout是hidden-hidden之间的dropout(循环层之间),控制循环状态的线性变换的神经元断开比例
- 第三个Dropout是在层之间加入dropout层,是层与层之间的dropout
- 1,2两个dropout都是针对该层的LSTM设置的
- dropout表示对W x 的dropout,recurrent_dropout表示对W h
model.add(LSTM(10)) model.add(Dropout(0.5)) model.add(Dense(1,activation='sigmoid'))
- 记LSTM的输出为 hT(10维,最后一个单元的隐藏状态),下一层Dense层的输出为y=Why*HT(1维),设 ,则这里的Dropout层表示对 Why进行概率为0.5的dropout