lstm的dropout机制

model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))

model.add(Dropout(0.5))

  1.  第一个dropout是输入层x和hidden之间的dropout,控制输入线性变换的神经元断开比例
  2.  第二个recurrent_dropout是hidden-hidden之间的dropout(循环层之间),控制循环状态的线性变换的神经元断开比例
  3. 第三个Dropout是在层之间加入dropout层,是层与层之间的dropout
  • 1,2两个dropout都是针对该层的LSTM设置的 
  • dropout表示对W x 的dropout,recurrent_dropout表示对W h
model.add(LSTM(10))
model.add(Dropout(0.5))
model.add(Dense(1,activation='sigmoid'))

  • ​记LSTM的输出为  hT(10维,最后一个单元的隐藏状态),下一层Dense层的输出为y=Why*HT(1维),设  ,则这里的Dropout层表示对  Why进行概率为0.5的dropout
以下是基于Keras框架的CNN-LSTM注意力机制代码示例: ```python from keras.models import Model from keras.layers import Input, Conv1D, MaxPooling1D, LSTM, Dense, Dropout, Flatten, concatenate, Activation, Multiply # 定义CNN-LSTM模型结构 def cnn_lstm_model(input_shape): input_layer = Input(shape=input_shape) # CNN部分 conv1 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu')(input_layer) conv1 = MaxPooling1D(pool_size=2)(conv1) conv1 = Dropout(0.2)(conv1) conv2 = Conv1D(filters=128, kernel_size=3, padding='same', activation='relu')(conv1) conv2 = MaxPooling1D(pool_size=2)(conv2) conv2 = Dropout(0.2)(conv2) conv3 = Conv1D(filters=256, kernel_size=3, padding='same', activation='relu')(conv2) conv3 = MaxPooling1D(pool_size=2)(conv3) conv3 = Dropout(0.2)(conv3) conv4 = Conv1D(filters=512, kernel_size=3, padding='same', activation='relu')(conv3) conv4 = MaxPooling1D(pool_size=2)(conv4) conv4 = Dropout(0.2)(conv4) flatten = Flatten()(conv4) # LSTM部分 lstm = LSTM(units=128, return_sequences=True)(input_layer) lstm = LSTM(units=128)(lstm) # 注意力机制部分 attention = Dense(1, activation='tanh')(conv4) attention = Flatten()(attention) attention = Activation('softmax')(attention) attention = Multiply()([conv4, attention]) attention = Flatten()(attention) # 合并CNN和LSTM部分 merge = concatenate([flatten, lstm, attention]) output = Dense(1, activation='sigmoid')(merge) model = Model(inputs=input_layer, outputs=output) return model ``` 该代码定义了一个CNN-LSTM模型结构,其中包含了注意力机制部分。CNN部分包含了4个卷积层和池化层,LSTM部分包含了2个LSTM层,注意力机制部分包含了一个全连接层、一个softmax层和一个乘法层。最后将三个部分的输出合并起来,接一个全连接层输出最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值