深度学习
xinyihhh
这个作者很懒,什么都没留下…
展开
-
LSTM模型model.summary()输出的param计算
基本神经 系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录 前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结 前言 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能的不断发展,机器学习这门技术也越来越重..原创 2021-12-25 11:32:27 · 1194 阅读 · 0 评论 -
lstm的dropout机制
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))model.add(Dropout(0.5))第一个dropout是输入层x和hidden之间的dropout,控制输入线性变换的神经元断开比例 第二个recurrent_dropout是hidden-hidden之间的dropout(循环层之间),控制循环状态的线性变换的神经元断开比例 第三个Dropout是在层之间加入dropout层,是层与层之间的dropout1,2两...原创 2021-12-24 21:33:42 · 7594 阅读 · 0 评论 -
LSTM参数理解
LSTM(units, input_shape=(window, feanum), return_sequences=True/False)1.units:指的并不是一层LSTM有多少个LSTM单元,实际代表的是LSTM单元内的隐藏层的尺寸;对于LSTM而言,每个单元有3个门,对应了4个激活函数(3个sigmoid,一个tanh)。假如units=32,也就是说有4个神经元数量为32的前馈网络层。计算过程:假如序列长度为5(5个时间点),维度为10(每个时间点的特征数量),对于任意一个时间点1×10原创 2021-12-23 11:35:48 · 5864 阅读 · 1 评论