machine learning
xinzitianya
这个作者很懒,什么都没留下…
展开
-
安装cuda-convnet
首先,通过git下载cuda-convnet2的代码,在build.sh中调整一下路径,就可以成功build了。 装好后想进行一下测试,就取网上找数据,发现imagenet实在太大,就准备用cifar-10。只有10类,50000 train batches, 10000 test batches。下载地址为http://www.cs.toronto.edu/~kriz/cifar-10-py-原创 2014-11-26 14:09:21 · 1642 阅读 · 1 评论 -
Selective Search for Object Recognition
object localisation的几种方式,Exhaustive search, segmentation. Sliding window, part-based object localisation. 论文中的算法先对image在不同的表达下做over segmentation, 然后不断 hierarchical,在这个过程中不停产生box.算法描述非常明确。 关于两个r原创 2014-12-09 16:07:57 · 688 阅读 · 0 评论 -
Segmentation as Selective Search for Object Recognition
这是一篇2011ICCV的文章,重点是Selective Search. 其中Exhaustive中还包括sliding window,part-based等等。 而这篇用改进的segmentation, a hierachical grouping algorithm来做Selective Search 使用part-based object segmentation作为起点,然后原创 2014-12-07 16:52:45 · 1067 阅读 · 0 评论 -
Rich feature hierachies for accurate object detection and semantic segmentation
这篇是经典的RCNN,用来处理object detection的。 先采用selective search的算法,找出2K左右的bounding box,经过一步warp,然后丢进CNN中,提取出4096的feature vector,再用200个SVM分别分类。 其中selective search使用fast mode,训练CNN采用了Supervised pre-training原创 2014-12-09 12:04:51 · 813 阅读 · 0 评论 -
DeepID-Net:multi-stage and deformable deep convolutional neural network for object detection
这篇论文的工作在ImageNet 的detection task 中rank2,但是组合了一大堆东西,非常麻烦。 这篇论文的框架是基于RCNN的,使用了selective search来寻找bounding box,然后还用了RCNN作一个简单的过滤,将SVM score太低的box reject掉了。 然后用作者训练的10个不同的DeepID-Net来detection,将结果ave原创 2014-12-14 20:19:06 · 2866 阅读 · 0 评论