原创https://blog.csdn.net/lizz2276/article/details/105679510和https://blog.csdn.net/weixin_44604887/article/details/105099177
问题描述:在使用以下语句时,执行报错——无法访问/访问超时/访问被拒绝。
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
但是,这里我们需要官方的数据集进行练习,就必须要进行下载数据的——既然通过load_data()默认下载不可以,那么我们不如通过本地下载,再放入指定文件中来解决问题呢。(思路没错,init.py等函数中也确实包含如果数据存在就不需要下载的函数体部分,但是我最后解决还是花了点时间的——好了,废话不多说,进入正题)
我们接下来的方法——就是通过本地下载数据集,然后放入指定路径进行存放,使得load_data()可以读取数据。
解决方法:(建议至少运行过一次load_data()函数,创建需要的文件路径)
补充提示:可以在按照我的方法解决问题前,运行一次相应的load_data()函数,这样虽然不成功,但是会创建一个路径——这样下边的步骤就可以直接进行了。
当然你也可以不——只是需要在C盘根目录下创建对应的文件即可,但我想现在在查文档的你,已经遇到问题了,所以算唠叨一下吧。
前往数据集下载网址直接下载需要的四个数据集。
下载1: train-images-idx3-ubyte.gz
下载2: train-labels-idx1-ubyte.gz
下载3: t10k-images-idx3-ubyte.gz
下载4: t10k-labels-idx1-ubyte.gz
或me百度网盘下载好的数据源,
链接:https://pan.baidu.com/s/1kFIACywSCdGv_m6kYiKtCQ 提取码:snur
然后将数据集放入到C盘用户文件夹的.keras文件下的datasets目录里(不要解压哦),me的路径 C:\Users\lenovo\.keras\datasets\fashion-mnist,下载失败时该文件夹下已有了两个文件
具体如下:
1.点击C盘下的用户文件夹lenovo进入
2.进入.keras文件夹
3.再进入datasets
4.进入fashion-mnist文件夹——这里我们用fashion-mnist练习,所以将下载的数据集放进去这里
(如果是mnist数据集就需要放进mnist文件夹——这样的文件都是提前通过先使用keras的load_data()下载,虽然会失败,但是会留下一个空目录,就是我们下载到本地的数据集存放的地方。)
5.剪切数据存放
到这里,我们再引用load_data(),就不会有问题了,它会直接读取本地数据集。
也就是以下语句可以执行成功了。
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
最后,附上官网教程:https://www.tensorflow.org/tutorials/keras/classification
个人觉得还是从官网入手学习可能会容易一些(因人而异)。
——预祝各位热爱人工智能的各位学习进步,越来越优秀。