赠书活动开启!
大家好,最近整理了一些数据分析必备且非常经典的书单,这些书都是数据分析入门非常实用的书籍。
书籍主要分6类:
1、数据分析基础
2、数据化管理
3、python数据分析
4、用户画像
5、机器学习
6、产品经理
详细书籍分类及名称如下:
这几类书籍是一个比较标准的进阶过程,首先,数据分析基础的学习对后续数据分析是一个基础沉淀,然后通过学习数据化管理了解通过数据来驱动业务进行管理,然后进一步通过学习python来进行数据分析和挖掘,然后详细了解用户画像的分析方法论可以更好的帮助数据挖掘,然后是进一步完善机器学习的基础算法和原理,可以更深入的了解机器学习,最后通过学习产品经理的思维,为以后深入业务打磨业务产品做好准备,最终升阶到业务商业化的分析思维,可以融会贯通的进行数据驱动业务。
下面重点给大家简单介绍两本书:
第一本:《数据化管理:洞悉零售及电子商务运营》
重点讲述了两个年轻人在大公司销售、商品、电商、数据等部门的相关工作的事情,通过大量案例深入浅出地讲解了数据意识和零售思维。作者将各种数据分析方法融入到具体的业务场景中,形成了数据化管理模型,从而帮助企业提高运营管理能力。
全书共8章、书中介绍了什么是数据化管理,数据化管理的思维是什么,然后通过零售电商的行业经验来举例说明,有关零售电商的商品分析,流量分析、指标体系建立等,常用的数据分析方法和模型是如何建立和使用的。
《数据化管理:洞悉零售及电子商务运营》全部案例均基于Excel,每个人都能快速上手应用并落地。当然现在很多公司都基于大数据分析平台,通过SQL或者代码实现数据的存储和分析,但是数据化管理的思维是不变的,建议入门同学可以先进行思维学习。
第二本:《机器学习_周志华》
本书即是一本机器学习的入门书籍,也是一本了解机器学习算法推导原理的最佳书籍,因为本书在内容上尽可能涵盖机器学习基础知识的各方面, 同时对于很多基础算法的原理也进行了详细的推导,同时结合书中推荐的参考资料,可以极大的帮助大家贯通机器学习算法原理。
本书前两张介绍了机器学习的发展由来,同时对模型的评估和选择先进行了讲解,让学习的人先知道模型的原貌,再进入细致的算法学习了解。
全书共16章, 大体上可分为3个部分:第1部分包括第1~3章, 介绍机器学习基础知识; 第2部分包括第4~10章, 介绍一些经典而常用的机器学习方法; 第3部分包括第11~16章, 介绍一些进阶知识. 前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时间情况选择使用.
本书更加侧重基础理论知识,尤其对算法原理进行了详尽的介绍,如果因为算法原理推导比较乏味,建议可以结合《机器学习实战》进行搭配学习使用,结合实际案例先了解熟悉机器学习,再逐步推导算法原理,达到融会贯通。
以上我有整理出来PDF电子书,有需要的朋友关注wx号:机器学习算法与Python分析知识库,发私信给我,可以随机选择一本,如果同时转发截图发私信我也可以随机选择两本。
希望对大家有帮助!
–END–