xiong_wq
码龄5年
关注
提问 私信
  • 博客:5,879
    5,879
    总访问量
  • 5
    原创
  • 132,418
    排名
  • 24
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-05-10
博客简介:

xiong_wq的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    70
    当月
    0
个人成就
  • 获得23次点赞
  • 内容获得0次评论
  • 获得48次收藏
创作历程
  • 4篇
    2024年
  • 1篇
    2023年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用llm-compressor库进行模型量化

llm-compressor 是一个用于模型量化的库,同属于vllm-project。
原创
发布博客 2024.11.05 ·
769 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

使用LLaMA-Factory进行模型量化

以下实验基于微调后模型进行量化。针对基座模型的直接量化,可以使用与部署中使用的数据类型紧密匹配的校准数据作为校准数据集量化(任意数据集)该部分可以参考使用llm-compressor。
原创
发布博客 2024.11.04 ·
573 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

LLaMA-Factory多机多卡训练

为了在多机多卡环境下训练大模型,我们可以使用。它支持多种常见模型,集成了包括(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等训练方法,并且有web-ui和命令行两种使用方式,是目前主流的模型训练框架之一。
原创
发布博客 2024.10.23 ·
1808 阅读 ·
10 点赞 ·
0 评论 ·
19 收藏

使用vLLM的guided_decoding_backend参数进行结构化输出

以下是vLLM库中的官方定义,也就是说参数guided_decoding_backend仅可以被赋值为outlines或者lm-format-enforcer。注意:为str格式。
原创
发布博客 2024.10.17 ·
554 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

使用Git Bash拉取github仓库代码(包含分支拉取与切换)

3.对项目进行克隆,项目地址为github仓库中Code下复制的HTTPS地址。5.在步骤4命令窗口中可以继续对分支进行拉取,用如下命令可实现:创建本地分支branch_name,且同远程分支origin/branch_name建立了映射关系。4. 进入克隆好的项目文件夹中,右键打开Git Bash Here,可以使用git branch 查看本地分支,最初只有main。6.切换分支,当运行步骤5后,会发现此时本地默认分支从main转变为了branch_name,此时可以使用以下命令进行切换。
原创
发布博客 2023.03.29 ·
2164 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏