{ x 1 + x 2 − x 3 = 7 2 x 1 − x 2 + 3 x 3 = 9 \left\{\begin{matrix} x_1+x_2-x_3=7\\ 2x_1-x_2+3x_3=9 \end{matrix}\right. {x1+x2−x3=72x1−x2+3x3=9
- 具体的矩阵描述
[ 1 1 − 1 2 − 1 3 ] [ x 1 x 2 x 3 ] = [ 7 9 ] \begin{bmatrix} 1&1&-1\\ 2&-1&3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 7\\ 9 \end{bmatrix} [121−1−13]⎣⎡x1x2x3⎦⎤=[79]
- 抽象的矩阵描述
A x = b A = [ 1 1 − 1 2 − 1 3 ] , b = [ 7 9 ] \textbf{A}x=b \\ \textbf{A}=\begin{bmatrix} 1&1&-1\\ 2&-1&3 \end{bmatrix},b=\begin{bmatrix} 7\\ 9 \end{bmatrix} Ax=bA=[121−1−13],b=[79]
- 分块矩阵描述,用列向量表示
[ α 1 α 2 α 3 ] [ x 1 x 2 x 3 ] = b \begin{bmatrix} \alpha_1& \alpha_2 &\alpha_3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=b [α1α2α3]⎣⎡x1x2x3⎦⎤=b
α 1 = [ 1 2 ] , α 2 = [ 1 − 1 ] , α 3 = [ − 1 3 ] \alpha_1=\begin{bmatrix}1\\ 2\end{bmatrix} ,\alpha_2=\begin{bmatrix}1\\ -1\end{bmatrix} ,\alpha_3=\begin{bmatrix}-1\\ 3\end{bmatrix} α1=[12],α2=[1−1],α3=[−13]
- 向量的线性表示的描述
x 1 α 1 + x 2 α 2 + x 3 α 3 = b x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=b x1α1+x2α2+x3α3=b