- 平行板电容器的电容
C = ε 0 S d C=\frac{\varepsilon_0S}{d} C=dε0S - 电容,即容电存储电荷的容器,只要一个物体能存储电荷即可视为电容
- 孤立导体的电容
- 静电屏蔽与电容
- 这可以帮助理解为何平行板电容器计算电容的 q q q 只算一个极板上的电荷,平行板电容可以看作上面装置拍平得来
- 电容和水罐子类比
- 求均匀带正电的无限大平面的场强分布,设电荷面密度为
σ
e
\sigma_e
σe
- 运用高斯定理,做高斯面
- 运用高斯定理,做高斯面
- 先计算电通量,设底面积为
S
S
S,则
Φ
E
两
底
=
E
S
+
E
S
=
2
E
S
,
Φ
E
侧
=
0
\Phi_{E两底}=ES+ES=2ES,\Phi_{E侧}=0
ΦE两底=ES+ES=2ES,ΦE侧=0,通过整个高斯面的电通量为
Φ E = Φ E 两 底 + Φ E 侧 = 2 E S \Phi_E=\Phi_{E两底}+\Phi_{E侧}=2ES ΦE=ΦE两底+ΦE侧=2ES - 带电平面的电荷面密度为
σ
e
\sigma_e
σe,高斯面内包含的电荷为
σ
e
S
\sigma_eS
σeS
Φ E = σ e S ε 0 \Phi_E=\frac{\sigma_eS}{\varepsilon_0} ΦE=ε0σeS - 均匀带正电的无限大平面的场强
E = σ e 2 ε 0 E=\frac{\sigma_e}{2\varepsilon_0} E=2ε0σe
- 来自于赵凯华,陈熙谋的《电磁学》