MLCAD 会议简介

MLCAD 会议简介


一、MLCAD 是什么?

MLCAD 全称为 Machine Learning for Computer-Aided Design,即 面向电子设计自动化的机器学习国际会议
它是近年来随着 机器学习(ML)在EDA(电子设计自动化,CAD)领域应用迅猛发展而创立的一个专门会议。

名称Machine Learning for Computer-Aided Design (MLCAD)
中文译名机器学习与计算机辅助设计国际会议
领域机器学习 + EDA/CAD
首届时间2020 年
举办频率每年一届
论文出版IEEE Xplore、EI 收录
会议官网https://mlcad-conf.org/
举办地欧洲、美洲等地轮流

二、MLCAD 的诞生背景与定位

1. 为什么诞生?

随着半导体工艺进入 7nm、5nm、3nm 乃至更先进节点,集成电路设计变得极其复杂。而传统 EDA 工具在面对以下问题时开始显得力不从心:

  • 电路版图布线(Placement & Routing)复杂度增加。
  • 模拟电路参数优化过程耗时漫长。
  • 工艺偏差、温度变化等带来的电路性能波动,验证周期拉长。

与此同时:

  • 深度学习、强化学习等机器学习技术在图像识别、自然语言处理上取得巨大成功。
  • 工业界(比如谷歌、英伟达、Cadence、Synopsys 等)开始尝试用 机器学习方法提升 EDA 工具性能

在这样的背景下,MLCAD 于2020年正式创办,专注探讨 机器学习如何解决 EDA/CAD 领域的挑战

2. 与其他EDA会议(DAC/ICCAD/SMACD)的区别:

会议名称主要方向与 MLCAD 区别
DAC综合性 EDA 会议,数字/模拟/算法/工具全覆盖综合全面,MLCAD 侧重 ML + CAD
ICCADCAD 方法论、算法为主理论偏强,MLCAD 聚焦 ML 技术
SMACD模拟电路EDA,布局、参数优化模拟电路主场,MLCAD 强调AI算法
MLCADML+EDA,机器学习赋能设计自动化专门探讨 ML 在 EDA 领域应用

三、MLCAD 核心研究方向

MLCAD 的论文聚焦于 机器学习、人工智能方法在 EDA 全流程的应用。主要研究领域如下:

1. 版图布线(Placement & Routing)优化

  • 强化学习自动布局。
  • 图神经网络(GNN)辅助布线。
  • 电路面积、时序、功耗的多目标优化。

2. 模拟电路综合与参数优化

  • 神经网络预测电路性能,减少SPICE仿真次数。
  • 贝叶斯优化在电路参数调整中的应用。
  • 遗传算法+机器学习联合优化模拟电路。

3. 电路性能建模与工艺容差分析

  • 工艺漂移下电路性能预测。
  • 高速建模方法,用 ML 替代传统蒙特卡洛仿真。
  • 机器学习辅助温度、电压对模拟电路的鲁棒性评估。

4. EDA 工具性能提升

  • 智能仿真调度算法,减少电路验证时间。
  • 模型压缩和硬件加速,让EDA工具运行更快。
  • 智能错误检测,识别版图设计缺陷。

5. 新兴领域:强化学习、GNN 与 EDA 结合

  • 谷歌用强化学习训练布局算法,超越人类工程师设计的芯片版图。
  • 图神经网络(GNN)处理电路网络图,辅助性能分析与优化。

四、MLCAD TPC(技术程序委员会)的特点

1. TPC 成员来源:

  • 学术界:来自全球电子设计自动化、机器学习、集成电路领域的高校教授。
  • 工业界:谷歌、英伟达、Cadence、Synopsys、IBM 等 EDA 软件公司与芯片公司。

2. 典型 TPC 成员单位:

类型代表机构
学术界加州大学伯克利分校、卡耐基梅隆大学、慕尼黑工业大学、鲁汶大学
工业界谷歌(Google Brain)、英伟达、Cadence、Synopsys、台积电

3. 通过 TPC 看趋势:

  • 强化学习(RL)+ 电路版图布线。
  • 图神经网络(GNN)+ 电路拓扑分析。
  • 电路性能预测模型,替代部分SPICE仿真。

五、典型论文案例

1. 谷歌的 RL+版图布局

论文:《Chip Placement with Deep Reinforcement Learning》

  • 提出用 强化学习(RL)自动布局芯片版图
  • 该方法已应用于 Google TPU 芯片的实际生产。

2. 图神经网络建模电路性能

  • 用 GNN 建模模拟电路,快速估算性能,减少 SPICE 仿真。
  • 提升电路设计效率,加速优化收敛。

六、MLCAD 对研究生和工程师的价值

1. 研究生/学术研究方向

  • 如果你在研究 EDA、模拟电路优化、自动布局布线、AI辅助电路设计,MLCAD 是很好的投稿平台。
  • 特别适合:
    • 强化学习+EDA
    • 图神经网络+电路分析
    • 电路参数优化+机器学习

2. 工程师/EDA 工具开发者

  • 掌握前沿方法:EDA 工具开始大规模引入 AI 技术,MLCAD 是获取 AI+EDA 最新进展的窗口。
  • 工业界认可度逐年上升:Synopsys、Cadence、台积电等企业研发人员开始关注 MLCAD,甚至直接参会交流。

七、投稿经验与会议特点

1. 录用率相对友好(相比 DAC、ICCAD)

  • 由于是新兴会议,目前录用率较 DAC、ICCAD 略高(约50%左右)。
  • 强调 AI 方法与 EDA 结合,不强求电路实际流片,重视仿真结果和算法创新。

2. 论文结构建议

模块内容要求
问题描述电路设计/优化的难点是什么
方法创新机器学习方法如何应用于EDA
仿真验证结合电路数据,展示性能提升
与传统对比与手工设计或经典EDA工具对比

八、总结:MLCAD 核心信息速览

维度具体信息
创办时间2020年
涉及领域机器学习 + 电子设计自动化(EDA)
热点方向强化学习版图布局、GNN电路建模、性能优化预测
TPC 成员背景学术+工业,谷歌、英伟达、Synopsys 等
论文类型AI 算法 + 电路验证仿真
工业价值工业界逐步认可,EDA工具厂商高度关注
适合人群EDA 研究生,EDA工具开发者,模拟/数字电路优化工程师

MLCAD(Machine Learning for Computer-Aided Design)会议的技术程序委员会(Technical Program Committee,TPC)由来自全球学术界和工业界的专家组成,负责审稿、评审和制定会议技术计划。TPC成员的专业背景涵盖机器学习(ML)电子设计自动化(EDA),确保会议内容的高质量和前沿性。

在**2024年第六届ACM/IEEE机器学习与计算机辅助设计国际研讨会(MLCAD 2024)**中,TPC成员包括:

  • 学术界代表

    • Siddharth Garg(纽约大学)
    • Yibo Lin(北京大学)
    • Youngsoo Shin(韩国科学技术院)
    • Bei Yu(香港中文大学)
    • Jiang Hu(德克萨斯农工大学)
    • Marilyn Wolf(内布拉斯加大学林肯分校)
    • Paul Franzon(北卡罗来纳州立大学)
    • Jörg Henkel(卡尔斯鲁厄理工学院)
    • Ulf Schlichtmann(慕尼黑工业大学)
  • 工业界代表

    • Rajeev Jain(高通公司)
    • Vidya A. Chhabria(亚利桑那州立大学)
    • Hammond Pearce(新南威尔士大学)

这些TPC成员在各自领域拥有丰富的经验和卓越的研究成果,确保了MLCAD会议在机器学习与计算机辅助设计交叉领域的高水平学术交流。

此外,MLCAD会议还设有指导委员会(Steering Committee),成员包括:

  • Marilyn Wolf(内布拉斯加大学林肯分校)
  • Paul Franzon(北卡罗来纳州立大学)
  • Jörg Henkel(卡尔斯鲁厄理工学院)
  • Ulf Schlichtmann(慕尼黑工业大学)

这些委员会成员共同致力于推动机器学习在电子设计自动化领域的研究和应用,确保MLCAD会议始终站在学术和技术的前沿。

通过了解MLCAD会议的TPC组成,可以看出该会议在机器学习与EDA交叉领域的专业性和权威性,为研究人员和从业者提供了一个高质量的交流平台。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值