spring+springmvc+hibernate+thymeleaf 练习demo项目源码
spring+springmvc+hibernate+ thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
spring+springmvc+jpa+jsp 练习demo项目源码
spring+springmvc+jpa+jsp 框架组合练习学习做的一个完整的精简的小demo项目源码
springboot-scheduler定时任务学习demo源码
springboot 框架自带的scheduler定时任务功能学习demo源码
springboot+mybatis+redis+thymeleaf学习整合web项目demo源码
springboot+mybatis+redis+thymeleaf技术整合的完整的一个web项目demo源码
spring batch 学习多种场景练习demo项目源码
spring batch 学习多种场景练习demo项目源码,包括:
1.读取文件--处理--写入文件;
2.读取文件--处理--写入数据库 ;
3.读数据库--处理--写入数据库;
4.读数据库--处理--写入文件;
文件类型包括:CSV,TXT,JSON,XML;
数据库读写操作包括:JDBC 游标,JDBC分页,JDBC存储过程;
Hibernate 游标,Hibernate分页,ibatis分页,jpa分页。
RabbitMQ学习简单demo项目源码
RabbitMQ学习过程中,写的一个简单完整的demo项目源码,各种模式的MQ都有一个简单的例子,喜欢实践学习的人看看
spring boot+jpa+thymeleaf 练习demo项目源码
spring boot+jpa+thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
Spring Batch学习demo项目源码
Spring Batch学习过程中练习的一个简单完整的demo项目源码
租房系统更新SSH三大框架整合版
北大青鸟 租房系统 SSH三大框架整合版
北大青鸟 毕业项目 OA系统
北大青鸟毕业设计,OA项目全部代码和文档等!
spring+springmvc+hibernate+jsp 练习demo项目源码
spring+springmvc+hibernate+jsp 框架组合练习学习做的一个完整的精简的小demo项目源码
spring boot+mybatis+thymeleaf 练习demo项目源码
spring boot+ mybatis+thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
Activiti工作流学习demo项目源码
Activiti工作流学习过程中练习的简单的较完整的demo项目源码
spring+springmvc+mybatis+thymeleaf练习demo项目源码
spring+springmvc+mybatis+thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
springboot+spring data jpa+thymeleaf学习web项目整合demo源码
springboot+spring data jpa+thymeleaf学习简单完整的web项目整合demo源码
spring boot+mail邮件服务学习demo项目源码
spring boot+spring封装的mail邮件服务技术学习过程中简单练习的几个邮件类型demo项目源码
spring+springmvc+jpa+thymeleaf 练习demo项目源码
spring+springmvc+jpa+thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
spring+springmvc+mybatis+jsp练习demo项目源码
spring boot+mybatis+jsp 框架组合练习学习做的一个完整的精简的小demo项目源码
北大青鸟 第2单元 网上书城项目代码
北大青鸟 第2单元 网上书城项目,自己写的完整代码
spring boot+hibernate+thymeleaf 练习demo项目源码
spring boot+hibernate+thymeleaf 框架组合练习学习做的一个完整的精简的小demo项目源码
PIL-批量旋转图片-python实现
PIL,批量旋转图片,python实现。
下载图片验证码-python实现
根据URL网址获取图片验证码,批量下载保存本地,python实现。
pandas-处理excel工具-python实现
Pandas库是Python编程语言中一个强大的数据分析和数据处理工具。以下是对pandas的详细介绍:
1. 基本概述
- 定义:Pandas是一个开源的数据分析和数据处理库,基于Python编程语言。它提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。
- 特点:Pandas的主要优势在于能够处理和分析结构化数据,提供了丰富的功能,包括数据清洗、数据转换、数据分析和数据可视化等。
2. 核心数据结构
- Series:类似于一维数组或列表,是由一组数据以及与之相关的数据标签(索引)构成。Series可以看作是DataFrame中的一列,也可以是单独存在的一维数据结构。
- DataFrame:类似于一个二维表格,它是Pandas中最重要的数据结构。DataFrame可以看作是由多个Series按列排列构成的表格,它既有行索引也有列索引,因此可以方便地进行行列选择、过滤、合并等操作。
PDF转换工具-python实现
PDF转换工具包:pdf 转成 word、、pdf 转成 图片、pdf 转成 html、图片 转成 pdf。
Fitz是一个Python库,专门用于处理PDF文档,提供了一套完整的API来读取、操作和修改PDF内容。它允许开发者解析PDF文件的结构,提取文本、图像,并支持创建新的PDF文档。例如,你可以使用Fitz来提取PDF页面的内容,添加注释,甚至合并或分割PDF。
另一方面,pdf2docx是一个用于将PDF文件转换为Word (.docx)格式的Python库。这个工具利用了python-docx库的能力,可以将PDF的文本、图片等元素转换成Word文档中的相应格式。通过pdf2docx,用户可以把不可编辑的PDF格式文件转换为可以编辑和分享的Word文档,这对于需要编辑PDF内容但PDF本身禁止编辑的情况非常有用。
两个工具结合使用时,可以实现从PDF到Word文档的自动化转换,比如批量转换,或者从PDF获取信息后生成定制化的Word文档。
三壶谜题-广度优先遍历算法-python实现
三壶谜题,广度优先遍历算法,python实现。
三壶谜题是一个经典的算法问题,通常使用广度优先遍历(BFS)算法来解决。以下是对三壶谜题及其广度优先遍历算法的详细介绍:
1. 基本概述
- 定义:三壶谜题是一个涉及三个不同容量的水壶(例如8品脱、5品脱和3品脱)的问题。目标是通过将水壶倒满或倒空的操作,最终在一个水壶中得到特定容量的水(如4品脱)。
2. 算法步骤
- 初始化:首先,将初始状态设置为一个水壶满(如8品脱),其余两个水壶为空。
- 状态表示:使用一个长度为3的数组表示当前三个水壶的容量状态。
- 扩展节点:对于每个状态,尝试所有可能的倒水操作,生成新的状态。如果新状态已经存在,则跳过;否则,将其加入待处理列表中。
- 检查目标:在每次迭代中,检查当前状态是否为目标状态(如4品脱)。如果是,则输出结果并结束搜索。
- 循环直到完成:重复上述过程,直到找到目标状态或所有可能的状态都被探索完毕。
回溯算法-求解N皇后问题-python实现
回溯算法,求解N皇后问题,python实现。
回溯算法是一种通过递归和逐步撤销(即回溯)来解决问题的算法。以下是对回溯算法求解N皇后问题的详细介绍:
1. 基本概述
- 定义:N皇后问题是一个经典的计算机科学问题,它的目标是在N×N的棋盘上放置N个皇后,使得任何两个皇后都不能处于同一行、同一列或同一对角线上。
- 特点:回溯算法适用于多步、多选、瞻前的问题,通过深度优先搜索策略尝试所有可能的放置方案。
2. 算法步骤
- 初始化棋盘:创建一个N×N的棋盘,并将所有格子初始化为空。
- 放置第一个皇后:在第一行的某个位置上放置第一个皇后。
- 递归地放置剩余的皇后:对于剩下的N-1个皇后,递归地在每一行放置它们,并确保它们不会攻击到已经放置的皇后。
- 检查解决方案:如果棋盘上所有的格子都被皇后占据,则找到了一个解。否则,回溯到上一个位置并重新尝试。
- 输出解决方案:输出或保存找到的所有解。
三分法-寻找假币问题-python实现
三分法,寻找假币问题,python实现。
三分法是一种在算法和计算机科学中常用的技术,特别适用于解决某些特定类型的问题。以下是对三分法寻找假币问题的详细介绍:
1. 基本概述
- 定义:三分法是一种将数据集分成三部分来处理的方法,通常用于查找问题或优化问题。
- 特点:三分法通过将数据集递归地划分为较小的子集,并分别计算子集的众数,然后合并子问题的解来得到原问题的解。
2. 算法步骤
- 初始化:首先检查输入数组的长度。如果长度为0或1,则直接返回数组本身作为结果。
- 分解:将数组分成三个子数组,分别处理这三个子数组。
- 解决:对于每个子数组,使用相同的方法进行处理,直到找到假币为止。
- 合并:将找到的假币与剩下的子集合并,计算合并后的假币。
动态规划算法-求解最大子数组问题-python实现
动态规划算法,求解最大子数组问题,python实现。
动态规划算法是一种通过将原问题分解为相对简单的子问题,并利用这些子问题的解来构建复杂问题的解的方法。以下是对动态规划算法求解最大子数组问题的详细介绍:
1. 基本概述
- 定义:最大子数组问题是在一个给定的整数数组中找到具有最大和的连续子数组的问题。
- 特点:动态规划算法通过构建一个状态转移方程来表示子问题的解与原问题的解之间的关系,从而高效地解决问题。
2. 算法步骤
- 初始化:首先检查输入数组的长度。如果长度为0,则返回0作为最大子数组和。
- 状态转移方程:定义一个数组`dp`,其中`dp[i]`表示以第`i`个元素结尾的最大子数组和。对于每个元素`arr[i]`,有两种选择:要么将其包含在当前的子数组中,要么不包含它。因此,状态转移方程可以表示为:
dp[i] = max(arr[i], dp[i-1] + arr[i])
分治算法-求众数问题-python实现
计算机专业,算法课程,分治算法,求众数问题,python实现.
分治算法是一种经典的算法设计思想,它将大问题分解为小问题,递归求解这些小问题,然后将结果合并得到原问题的解。以下是对分治算法求解众数问题的详细介绍:
1. 基本概述
- 定义:众数是指在一组数据中出现次数最多的元素。在计算机科学中,众数问题是一个常见的问题,可以使用分治算法来解决。
- 特点:分治算法通过将数据集递归地划分为较小的子集,并分别计算子集的众数,然后合并子问题的解来得到原问题的解。
2. 算法步骤
- 分解:将数据集分成两个子集,分别计算每个子集的众数和出现次数。
- 解决:比较两个子集的众数出现次数,将出现次数多的那个子集作为众数候选。
- 合并:递归地使用分治算法处理剩下的子集,将候选众数与剩下的子集合并,计算合并后的众数。
动态规划算法-解决01背包问题-python实现
算法设计,01背包问题,动态规划算法,python实现。
动态规划算法是解决01背包问题的一种有效方法。
1. 基本概述
- 定义:01背包问题是一类组合优化的NP完全问题,其核心在于如何在不超过背包容量的前提下,选择一组物品放入背包中,使得这些物品的总价值最大化。
- 特点:每个物品只能选择一次,即选择放入或者不放入背包。
2. 算法原理
- 状态表示:通常使用二维数组dp[i][j]来表示前i个物品在容量为j的背包里所能获得的最大价值。
- 状态转移方程:对于每个物品和每个容量,有两种选择:要么将物品放入背包,要么不放入。如果放入,则背包的容量减少该物品的重量,同时增加该物品的价值;如果不放入,则背包的价值不变。因此,状态转移方程可以表示为dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])。
分治算法-求解最大连续子序列和问题-python实现
分治算法,求解最大连续子序列和问题,python实现。
分治算法是一种通过将复杂问题分解为更小的子问题,递归求解这些子问题,然后将结果合并以得到原问题的解的算法策略。以下是对分治算法求解最大连续子序列和问题的详细介绍:
1. 基本概述
- 定义:分治算法是一种解决问题的策略,它将一个复杂的问题分解为两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解。
- 应用:在求解最大连续子序列和问题时,分治算法通过将数组分为两个子数组,分别求解每个子数组的最大连续子序列和,然后考虑跨越子数组的元素,最终合并得到整个数组的最大连续子序列和。
2. 算法步骤
- 初始化:首先检查输入数组的长度。如果长度为1,则直接返回该元素作为最大连续子序列的和。
- 分解问题:将数组分成两个子数组,分别处理左边和右边的子数组。
- 递归求解:递归地求解左右两部分的最大连续子序列和问题,并分别得到左右两部分的最大连续子序列和。
- 合并解:计算横跨左边子数组和右边子数组的最大连续子序列和,并与左右两部分的最大连续子序列和进行比较,取最大值作为最终结果。
人工智能-A星算法-python实现
计算机专业,研究生课程,人工智能入门课程,实验作业,利用A星算法完成路径搜索,python实现,图形化界面显示最优路径搜索过程。
A星算法(A*)是一种广泛应用于路径规划和图搜索的启发式算法。以下是对该算法的详细介绍:
1. 基本概述
- A*算法结合了Dijkstra算法的优点和贪心最佳优先搜索的启发式方法,通过使用一个评价函数f(n)来指导搜索过程[^1^]。该函数由两部分组成:g(n),表示从起点到节点n的实际代价;h(n),表示从节点n到目标节点的估计代价[^2^]。
2. 核心原理
- 为了确保A*算法的最优性,启发式函数h(n)必须是可接受的,即它从不高估实际代价。常见的启发式函数包括曼哈顿距离、欧几里得距离和对角线距离[^1^]。
- A*算法的核心在于其估值函数的设计,通过评估函数f(n) = g(n) + h(n)来决定搜索方向。
3. 算法步骤
- 初始化:创建一个开放列表(open list),初始时仅包含起点节点,并设置起点节点的g值为0,h值和f值根据启发式函数计算[^1^]。
- 搜索循环:从开放列表中取出f值最小的节点
人工智能-产生式系统-python实现
人工智能课程,产生式系统,python实现。
人工智能(AI)中的产生式系统是一种基于规则库的推理机制,通过规则匹配与推理等算法,实现问题的求解和自动决策。以下是对人工智能产生式系统的详细介绍:
1. 基本概述
- 定义:产生式系统是一种基于规则库的推理机制,通过规则匹配与推理等算法,实现问题的求解和自动决策。
2. 系统组成
- 规则库:用于描述某领域内知识的产生式集合,包含将问题从初始状态转换成目标状态的变换规则,是专家系统的核心。
- 综合数据库:又称事实库,存放输入的初始事实、外部数据库输入的事实以及中间结果和最后结果的工作区。
- 推理机:一个或一组程序,用来控制和协调规则库与综合数据库的运行,包含推理方式、控制策略,确定选用什么规则或如何应用规则。
3. 工作原理
- 正向推理:从已知事实出发,通过规则库求得结论。
- 反向推理:从目标(作为假设)出发,反向使用规则,求得已知事实。
- 双向推理:结合正向推理和反向推理,直至某个中间界面上两方向结果相符便成功结束。
人工智能-八数码问题-启发式算法-python实现
人工智能课程,八数码问题,采用启发式算法,寻找最优路径,python实现,图形化动态演示效果。
八数码问题是一种经典的搜索问题,通常使用启发式算法如A*算法来解决。以下是对采用启发式算法求解八数码问题的简要介绍:
1. 问题描述
- 八数码问题是一个典型的路径规划问题,在一个3×3的方格盘上,放有1~8的数码,另一格为空(也可以定义为0)。空格四周的数码可以移到空格。要解决的问题是如何找到一个数码移动序列使初始的无序数码转变为特殊的序列。
2. 核心原理
- A*算法结合了广度优先搜索(BFS)的全局最优性和迪杰斯特拉算法(Dijkstra)的局部最优性,通过评估函数f(n) = g(n) + h(n)来指导搜索过程。
- 其中g(n)是从初始节点到当前节点n的实际代价,h(n)是从当前节点n到目标节点的估计代价。
3. 启发函数
- 常用的启发函数包括不在位的将牌数和当前节点与目标节点对应将牌的欧氏距离。
- 例如,在八数码问题中,h(n)可以定义为不在位的将牌数,即当前状态与目标状态相比,有多少个数码不在正确的位置。
人工智能-k-means聚类算法-python实现
人工智能课程,k-means聚类算法,python实现。
k-means聚类算法是一种常用的无监督学习算法,用于将数据集分成k个簇(clusters),其中每个数据点属于最近的均值(centroid)所代表的簇。该算法通过迭代优化来最小化簇内平方误差和(within-cluster sum of squares)。
算法步骤如下:
随机选择k个初始质心(centroids)。
将每个数据点分配给最近的质心,形成k个簇。
重新计算每个簇的质心。
重复步骤2和3,直到质心不再发生变化或达到最大迭代次数。
spring boot ActiveMQ学习练习demo项目源码
spring boot ActiveMQ学习练习demo项目源码;包含text,map,byte,stream,object5种类型信息的发送和接收
spring boot security学习练习demo源码
spring boot security 框架组合练习学习做的一个完整的精简的小demo项目源码
spring boot rabbitmq学习练习demo源码
spring boot rabbitmq框架组合练习学习做的一个完整的精简的小demo项目源码
Spring Boot WebChat 网页聊天室
Spring Boot +Spring Security+Spring Data Jpa+Thymeleaf+Spring websocket 搭建的简易网页聊天室。
spring-boot-mybatis-cache-thymeleaf学习练习demo源码
spring-boot-mybatis-cache-thymeleaf框架组合练习学习做的一个完整的精简的小demo项目源码