- 博客(78)
- 收藏
- 关注
原创 Arduino:RFID门禁系统
目前该门禁系统包含:RFID模块继电器模块LCD显示屏模块可以通过将RFIF钥匙标签供RFID模块进行识别,从LCD显示屏上展示出钥匙ID。
2025-09-15 22:31:40
200
原创 机器学习实战
本章我们通过经典的“泰坦尼克号生存预测”项目为大家讲解机器学习的完整应用,该项目来自于全球知名的数据科学竞赛平台。该平台是数据科学、机器学习、人工智能领域的重要社区之一,为数据科学家和算法工程师提供了一个实践、分享和竞争的空间。无论是新手还是经验丰富的专家,Kaggle 都能为其提供丰富的资源和挑战,通过平台提供的数据集、竞赛、课程等资源,用户可以根据自身的需求提升相关的数据科学技能并与全球的数据科学家互动。泰坦尼克号生存预测项目是 Kaggle 上最著名的入门级机器学习项目之一。
2025-08-03 08:30:00
863
原创 自然语言处理入门
从传统的基于规则、基于统计的方法到深度学习和 Transformer 架构,研究人员一直没有停下对 NLP 探索的脚本,即便经历了人工智能的几次寒冬。随着 GPT 和 BERT 的出现,再到今天各种大模型在不同领域得到广泛应用,计算机已经能够理解和生成几乎所有语言的精髓并顺利的通过“图灵测试”。这一切不仅改变了我们与机器的互动方式,更为信息的获取、理解和交流开辟了崭新的天。d_%7Bk%7D。
2025-08-02 08:30:00
748
原创 神经网络模型
神经网络模型使用了与传统机器学习算法不同的方式从海量数据中学习知识,尽管模型缺乏可解释性,但不能否认它在图像、语音和自然语言处理等多个领域已经取得了显著的成绩。当然,训练神经网络模型需要消耗大量的资源,在应用神经网络模型时建议权衡其优缺点,并根据具体的任务需求选择合适的模型和训练方法。对于那些数据量较小、需要可解释性或计算资源有限的场景,我们建议考虑使用传统的机器学习算法或者其他更轻量级的模型。
2025-08-01 08:30:00
1671
原创 集成学习算法
集成学习通过结合多个模型来减少模型的偏差和方差,通常能获得比单一模型更好的预测效果。由于集成学习通常结合多个基础模型,它能够有效降低单一模型可能存在的过拟合问题,也能够处理异常数据和噪声数据,比单一模型更加稳定。当然,集成学习也存在计算开销大、模型可解释性差、超参数调优复杂等问题。除了 XGBoost 和 LightGBM 之外,还有一个因处理类别特征而闻名的 Boosting 算法叫做 CatBoost,三者都是 GBDT 系列算法的佼佼者。
2025-07-31 08:30:00
694
原创 K-Means聚类算法
K-Means 是一种经典的聚类算法,它的优点包括实现简单,算法收敛速度快;缺点是结果不稳定(跟初始值设定有关系),无法解决样本不均衡的问题,容易收敛到局部最优解,受噪声数据影响较大。如果你想通过可视化的方式理解聚类的过程, Naftali博主设计了一个网站,该网站上提供了可视化的方式展示 K-Means 和 DBSCAN 聚类(一种基于密度的聚类算法)。
2025-07-30 08:30:00
572
原创 回归模型(机器学习)
之前介绍的鸢尾花数据集并不适合讲解回归模型,为此我们引入另一个经典的汽车 MPG 数据集。汽车 MPG 数据集最初由美国汽车协会提供,我们可以通过该数据集预测车辆的燃油效率,即每加仑燃料行驶的里程(Miles Per Gallon, MPG)。需要注意的是,scikit-learn 库没有内置该数据集,我们可以直接从UCI 机器学习仓库网站下载数据集,也可以通过执行下面的代码联网加载该数据集。import ssl。
2025-07-29 08:30:00
945
原创 决策树和随机森林
决策树是简单有效且易于理解的预测模型,适用于分类和回归任务,但容易发生过拟合且对噪声数据敏感;随机森林通过集成多个决策树提高了泛化能力且对噪声数据不敏感,适合解决复杂问题。属性决策树随机森林模型复杂度简单较复杂抗过拟合能力差强计算效率高较低结果稳定性易受单一数据变化影响稳定适用场景数据较少、简单问题数据较多、复杂问题。
2025-07-27 08:30:00
1047
原创 k最近邻算法
kNN 算法是一种简单但不失强大的机器学习算法,适用于小数据集上的分类和回归任务,它的优点是简单易懂,没有显示的训练过程,不依赖于对数据分布的假设,可以适应复杂的数据模式。当然,kNN 算法的缺点也非常明显,最大的问题在于计算效率,所以在数据集较大时可能并不是最好的选择。
2025-07-26 11:03:10
694
原创 Pandas(DataFrame)
如果使用 pandas 做数据分析,那么DataFrame一定是被使用得最多的类型,它可以用来保存和处理异质的二维数据。这里所谓的“异质”是指DataFrame中每个列的数据类型不需要相同,这也是它区别于 NumPy 二维数组的地方。DataFrame提供了极为丰富的属性和方法,帮助我们实现对数据的重塑、清洗、预处理、透视、呈现等一系列操作。
2025-07-24 08:30:00
575
原创 Pandas的应用
Pandas 以 NumPy 为基础(实现数据存储和运算),提供了专门用于数据分析的类型、方法和函数,对数据分析和数据挖掘提供了很好的支持;同时 pandas 还可以跟数据可视化工具 matplotlib 很好的整合在一起,非常轻松愉快的实现数据可视化呈现。Pandas 核心的数据类型是Series(数据系列)、DataFrame(数据窗/数据框),分别用于处理一维和二维的数据,除此之外,还有一个名为Index的类型及其子类型,它们为Series和DataFrame提供了索引功能。日常工作中。
2025-07-23 19:00:00
1453
原创 Numpy的应用(数组的计算)
函数的第一个参数设置了两个条件,满足第一个条件的元素执行了乘以10的操作,满足第二个条件的元素执行了求平方的操作,两个条件都不能满足的数组元素会被处理为0。NumPy 的数组可以跟一个数值进行加、减、乘、除、求模、求幂等运算,对应的运算会作用到数组的每一个元素上,如下所示。NumPy 的数组跟数组也可以执行算术运算和关系运算,运算会作用于两个数组对应的元素上,这就要求两个数组的形状(函数的第一个参数给出了条件,满足条件的元素执行了乘以10的操作,不能满足条件的元素执行了求平方的操作。
2025-07-23 08:30:00
566
原创 Numpy的应用-2
判断数组是否都为True(all)(全为True,使用all返回True否则返回false)或者有True(any)(只要有一个True就会返回True)可以直接对数组取这几个值,当然也可以使用numpy中的函数,最后quantile的第二个参数设置为0.5表示计算50%分位数,也就是中位数。其中全距指的是最大值与最小值的差值,通过之前说的quantile设置第二个参数得到两个四分位的数值。现在对每一列进行处理(axis=0)如果需要对整体处理,和之前说的相同。变异系数通过计算得到。ylim设定y轴区间。
2025-07-22 15:30:18
409
原创 Numpy的应用
Numpy 是一个开源的 Python 科学计算库,。Numpy,对于同样的数值计算任务,使用 NumPy 不仅代码要简洁的多,而且 NumPy 在性能上也远远优于原生 Python,至少是一到两个数量级的差距,而且数据量越大,NumPy 的优势就越明显。NumPy 最为核心的数据类型是ndarray,使用ndarray可以处理一维、二维和多维数组,该对象相当于是一个快速而灵活的大数据容器。NumPy 底层代码使用 C 语言编写,解决了 GIL 的限制,ndarray。
2025-06-13 10:45:22
794
原创 MySQL与Python的连接
我们可以使用或者pymysql三方库来接入 MySQL 数据库并实现数据持久化操作。推荐大家使用纯 Python 的三方库pymysql,因为它更容易安装成功。
2025-05-14 14:02:31
1274
原创 MySQL中的索引
索引是关系型数据库中用来提升查询性能最为重要的手段。关系型数据库中的索引就像一本书的目录,我们可以想象一下,如果要从一本书中找出某个知识点,但是这本书没有目录,这将是一件多么可怕的事情!创建索引虽然会带来存储空间上的开销,但是在牺牲空间后换来的查询时间的减少也是非常显著的。对于MySQL 8.0 版本的 InnoDB 存储引擎来说,它支持三种类型的索引,分别是 B+ 树索引、全文索引和 R 树索引。
2025-05-13 09:00:00
773
原创 MySQL中的视图、函数和过程
对于互联网产品开发,我们一般建议让数据库只做好存储,复杂的运算和处理交给应用服务器上的程序去完成,如果应用服务器变得不堪重负了,我们可以比较容易的部署多台应用服务器来分摊这些压力。过程(又称存储过程)是事先编译好存储在数据库中的一组 SQL 的集合,调用过程可以简化应用程序开发人员的工作,减少与数据库服务器之间的通信,对于提升数据操作的性能也是有帮助的。但是MySQL 中的函数是可以执行 SQL 语句的。简单的说,视图就是虚拟的表,但与数据表不同的是,数据表是一种实体结构,而视图是一种虚拟结构。
2025-05-12 09:00:00
789
原创 MySQL中的Json函数与窗口函数
json类型有两种:分别为为什么要引入json类型?现在很多产品的用户登录都支持多种方式,例如手机号、微信、QQ、新浪微博等,但是一般情况下我们又不会要求用户提供所有的这些信息,那么用传统的设计方式,就需要设计多个列来对应多种登录方式,可能还需要允许这些列存在空值,这显然不是很好的选择;另一方面,如果产品又增加了一种登录方式,那么就必然要修改之前的表结构,这就更让人痛苦了。但是,有了 JSON 类型,刚才的问题就迎刃而解了,我们可以做出如下所示的设计。对于json查询的SQL语句与之前的不同,使用和。
2025-05-11 18:50:26
911
原创 关于解决MySQL的常见问题
这有可能是因为MySQL服务没有开启。打开系统配置(直接搜索即可),查看MySQL服务是否开启。此时显示的是已停止。确定是这个问题。现在打开计算机管理(直接搜索即可)。找到MySQL右击选择启动。现在再去输入密码即可使用服务。
2025-05-11 17:51:52
243
1
原创 MySQL的权限赋予与收回
数据库服务器通常包含了非常重要的数据,可以通过访问控制来确保这些数据的安全。可以为指定的用户授予访问权限或者从指定用户处召回指定的权限。
2025-05-10 09:00:00
205
原创 MySQL的插入、删除和修改
使用insert方法进行插入,插入的方式包括:插入完整的行、插入行的一部分、插入多行、插入查询的结果。因为在上一章中我们建立college表时,第一个col_id是自增字段,所有可以是使用default默认值。也可以针对不同的列进行插入(选择性插入)推荐大家使用下面这种做法,指定为哪些字段赋值,这样做可以不按照建表时设定的字段顺序赋值,可以按照values前面的元组中给定的字段顺序为字段赋值,但是需要注意,除了允许为null和有默认值的字段外,其他的字段都必须要一一列出并在values。
2025-05-09 09:30:42
490
原创 MySQL数据库创建、删除、修改
我们以学校体系进行建表。将数据库命名为create database相同四个关键的实体分别是学院、老师、学生和课程,其中,学生跟学院是从属关系,这个关系从数量上来讲是多对一关系,因为一个学院可以有多名学生,而一个学生通常只属于一个学院;同理,老师跟学院的从属关系也是多对一关系。一名老师可以讲授多门课程,一门课程如果只有一个授课老师的话,那么课程跟老师也是多对一关系;如果允许多个老师合作讲授一门课程,那么课程和老师就是多对多关系。简单起见,我们将课程和老师设计为多对一关系。
2025-05-08 20:20:03
1145
原创 QtDesigner入门
简单来说,当我们写好一段代码,已经实现了某些我们想要实现的功能后。希望实现的每一个功能可以可视化,通过按钮等功能完成人机交互。Qt Designer 是 Qt 框架提供的可视化界面设计工具,支持通过拖放控件快速构建图形用户界面(GUI),适用于 C++、Python(PyQt/PySide)等语言开发。接下来我以pyqt5举例(Anaconda)首先:你需要先创建一个环境(或者在你已有的环境下)安装pyqt5。此时你就已经创建好了一个名为Qt的环境了。如果你下次想打开这个环境:第二步:
2025-04-23 15:32:46
552
原创 直线检测(持续更新)
霍夫变换是图像处理中的一种特征提取技术,通过投票算法检测识别具有特定几何形状的物体。我们这篇文章,主要对直线进行检测。1.2 Hough变换原理我们看见直角坐标系中有两个点A B,他们构成了一条直线y=kx=b。知道了斜率k和截距b就可以确定一条直线。我们可以将这个坐标系看成一个笛卡尔空间。往深处思考一下,其实x就是我们的输入,k和b就是参数,y就是输出。就是当我们知道一个x,就一定知道直线上对于的点。接下来,我们就要将笛卡尔空间转化为霍夫空间。其实就是需要将直角坐标系上的点转化为极坐标上的点。
2024-10-17 14:42:05
3797
原创 骨架提取(持续更新)
骨架提取是图像处理或计算机视觉中的一种技术,用于从二值化图像中提取物体的中心线或轮廓,通常称为“骨架”或“细化图像”。这一技术主要用于简化形状表示,同时保留物体的拓扑结构。这里我们强调了,是对二值化图像中进行提取。
2024-10-13 21:11:07
1913
1
原创 RGB HSV LAB 灰度图之间的爱恨情仇(持续更新)
灰度图只有一个亮度通道,我们常常会看见将RGB图转化为灰度图。灰度可以理解为图像中像素的亮度值。在灰度图中,最黑的部分用灰度值 0 表示,最白的部分用灰度值 255 表示(对于 8 位灰度图像而言)。介于两者之间的灰度值则代表了不同程度的灰色。例如,灰度值为 128 的像素呈现出中等亮度的灰色。首先了解HSV中三个字母分别代表什么含义:H(Hue)色相,S(Saturation)饱和度,V(Value)明度/亮度。
2024-10-12 10:34:34
1674
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人