卷积神经网络(Basic CNN)(1)

一:二维卷积神经网络

在之前提到,将一个张量对其进行全连接后,会出现例如第一行的最后一位与第二行的第一位最终会连接在一起,丧失了一些原有的空间信息。

二维卷积,按照其原始的空间结构进行保存。

目标:明确输入和输出的维度(方便我们进行不同的卷积操作)

方法:构建特征提取器feature extraction,构建分类器classification(全连接)

首先由于全连接会丢失空间信息,因此我们通常先对其进行特征提取,使用到卷积,下采样等(其中一些步骤信息可见上图)。

最后对其进行全连接,方便其进行分类操作。

以上细节部分详细操作如下。

1.1输入

输入的内容如下:

当我们输入一个图像,其实拿到的是一个3维的张量。CxWxH。

随后需要对其进行分块patch,对每一个patch都进行卷积等操作,最终将得到的结果拼在一起。

 

1.2 卷积过程

单通道的卷积核。

例如一个3x3的卷积核,将其放在input上,对应的数字进行相乘(数乘),得到的结果填入output的相应位置,以此类推得到output。过程如下

但是通常我们不会简单面对单通道的问题。 

以三通道为例。

输入通道数一定与核的通道数保持一致。

过程与单通道类似,多通道的每一个通道都安排一个核与其对应计算,最终将相应位置的数字进行相加。

大家可以观察一下输入3x5x5采用3x3x3的核计算后通道的变化,和宽高的变化。 

我们可以发现,如果我们选择一个卷积核,最终就会得到一个通道数为1的输出,如果需要得到n个输出,就需要n个卷积核。

总结注意:

(1)每一个卷积核的通道数要与输入的通道数相同

(2)卷积核的数量决定了输出的通道数,与输出的通道数相同

那当我们知道输入和输出的要求,就可以选择相应的卷积核。

二:计算过程

相关函数的简单使用:

import torch
in_channels, out_channels = 5, 10
width, heigh = 100, 100
kernel_size = 3
batch_size = 1 

input = torch.randn(batch_size,in_channels,width,heigh)

conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size = kernel_size)

output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

在设定时,对batch_size,width,heigh都没有固定的要求,宽高都会随着卷积核大小变化,输入通道数,输出通道数,卷积核的大小需要进行设定。 

2.1padding

如果input是5x5,同时希望output也是5x5的,此时需要给inpput添一圈。padding=1

所有padding的相应值需要根据输入和输出来得到。

padding的填充通常填充0。

import torch

input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5)#(1,1,5,5)分别是(B,C,W,H)

conv_layer = torch.nn.Conv2d(1,1,kernel_size=3,padding=1,bias=False)

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3)
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

 

2.2stride 

除了改变padding,还可以改变步长stride。当stride=2时。

 

import torch

input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1,1,5,5)#(1,1,5,5)分别是(B,C,W,H)

conv_layer = torch.nn.Conv2d(1,1,kernel_size=3,stride=2,bias=False)

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3)
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

2.3下采样

常用的下采样是最大池化层。

以2x2的最大池化层举例。将输入分成2x2的块,每个块中找到最大值,做为输出。

import torch
input = [3,4,6,5,
        2,4,6,8,
        1,6,7,8,
        9,7,4,6]
input = torch.Tensor(input).view(1,1,4,4)

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)

output = maxpooling_layer(input)
print(output)

 

 2.4整体流程

 注意在(batch,20,4,4)到(batch,320)这一步需要进行view。

代码如下:

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
       
    def forward(self, x):
        batch_size = x.size(0) #把维度取出来
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x

model = Net()

这样整个流程就结束了。

如果有Gpu的话,可以实现迁移。

device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")
model.to(device)
import  torch
from torch.utils.data import DataLoader 
from torchvision import transforms 
from torchvision import datasets
import  torch.nn.functional as F
import torch.optim as optim

batch_size = 64
transform = transforms.Compose([transforms.ToTensor()])

train_dataset = datasets.MNIST(root='./dataset/MNIST', train=True, download=False, transform=transform)
train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/MNIST',  train=False, download=False, transform=transform)
test_loader = DataLoader(dataset=test_dataset, shuffle=False,  batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
       
    #下面就是计算的过程
    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x

model = Net()
#把计算迁移到GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.1,momentum=0.5)


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):#每次取一个样本
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        #优化器清零
        optimizer.zero_grad()
        # 正向计算一下
        outputs = model(inputs)
        #计算损失
        loss = criterion(outputs, target)
        #反向求梯度
        loss.backward()
        #更新权重
        optimizer.step()
        #把损失加起来
        running_loss += loss.item()
        #每300次输出一下数据
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():#不用算梯度
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)
            outputs = model(inputs)
            #我们取概率最大的那个数作为输出
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            #计算正确率
            correct += (predicted == target).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))


if __name__=='__main__':
    for epoch in range(10):
        train(epoch)
        if epoch % 10 == 9:
            test()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值