// --------------------------------------------------------------------------------
(1)好多软件包,目前仅仅支持python 2.7。
所以,我们安装python 2.7,以便进行数据科学实验。
(2)有少量的软件包,目前仅仅支持python 3.5,比如tensorflow,那怎么办?
我们可以在python 2.7下建立一个python 3.5的环境env,然后激活它,安装必要的
软件包,就可以安装相关软件和进行实验了。
其它文章已经讲述(1)。
本文讲述(2)。
// --------------------------------------------------------------------------------
在anaconda python 2.7环境下,创建anaconda python 3.5环境(env)
备注:目的是做些tensorflow的实验
参考文献
https://chrisconlan.com/installing-python-opencv-3-windows/
// --------------------------------------------------------------------------------
创建python 3.5环境,安装opencv
1,运行annaconda2(64bit)程序组的Anaconda Prompt
Anaconda Prompt下,建立环境 Anaconda3 env,创建的目录在C:\Anaconda2\envs\myWindowsCV
conda create --name myWindowsCV python=3.5
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,查看python的版本,这时候应该为3.5
python --version
3,配置anaconda 3.5的channel以便安装软件,清华的channel里面的软件好像有点老,让python找缺省的channel
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
4,安装numpy,anaconda-client,opencv3
conda install numpy
conda install anaconda-client
conda install --channel https://conda.anaconda.org/menpo opencv3
因为opencv3.4没有cv2.pyd for python3.5
所以不能用下面的办法
拷贝cv2.pyd
from
C:\opencv\build\python\2.7\x64
to
C:\Anaconda2\envs\myWindowsCV\Lib\site-packages
4.1,似乎需要安装2015版本的vc_redist.x64.exe
4.2,ensure python3.dll, python35.dll in C:\Anaconda2\envs\myWindowsCV
4.3,加入path系统变量
C:\opencv\build\bin
C:\opencv\build\x64\vc14\bin
C:\opencv\build\x64\vc15\bin
5,实验opencv
运行python shell
python
在python提示符>>>下
import cv2
cv2.__version__
import numpy as np
# Load an color image in grayscale
img = cv2.imread('s2.jpg',0)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
// --------------------------------------------------------------------------------
自行安装必要的软件包
1,运行annaconda2(64bit)程序组的Anaconda Prompt
Anaconda Prompt下
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,安装一批软件
conda install pandas
conda install matplotlib
conda install jupyter
conda install notebook
conda install scikit-learn
conda install scikit-image
conda install nltk
conda install networkx
conda install graphviz
conda install h5py
conda install hdf5
conda install pandas-datareader
conda install pillow
conda install requests
conda install scipy
conda install seaborn
conda install spyder
conda install statsmodels
conda install urllib3
conda install wheel
conda install zlib
conda install pip
conda install html5lib
3,安装cuda
下载完成后正常安装cuda_8.0.61_win10-exe
"我的电脑“-右键-属性-高级系统设置-环境变量
保证系统环境变量CUDA_PATH和CUDA_PATH_V8_0,已经创建
window"开始“-”运行“,cmd进入命令行,输入nvcc --version
顺利出现Nvidia CUDA的版本号V8.0.61
4,安装cudnn
下载解压cudnn到c:\cudnn
"我的电脑“-右键-属性-高级系统设置-环境变量
保证系统变量有path有c:\cudnn\cuda\bin
拷贝c:\cudnn下面的bin,include,lib到...CUDA\v8.0下
备注:似乎不用拷贝文件,环境变量配好就可以了
特别注意tensorflow-gpu==1.5.0以上,需要Cuda 9.0
5,安装tensorflow-gpu和keras
备注:如果没有nvidia gpu就安装tensorflow
conda install tensorflow-gpu
备注:不用这个命令
备注:不要用上面这句话盲目安装最新版本,因为tensorflow-gpu==1.5.0以上,需要Cuda 9.0
anaconda search -t conda tensorflow-gpu
用这个语句找到1.4版本的tensorflow-gpu,然后用下面的语句找到安装的指令,即第三行语句
anaconda show cjj3779/tensorflow-gpu
conda install --channel https://conda.anaconda.org/cjj3779 tensorflow-gpu
conda install keras
备注:不用这个命令
上述方法安装,如果版本太低,就用pip安装
特别注意:tensorflow-gpu==1.5.0以上,需要Cuda 9.0,所以上述第3步应该安装Cuda 9.0
pip install tensorflow-gpu==1.4.0
pip install keras==2.1.6
使用pip程序安装相关软件,出现configparser冲突,解决办法是,需要暂时对若干文件进行改名
碰到无法解决之问题,联系qxp1990@ruc.edu.cn派老师
cd C:\Anaconda2\Lib\site-packages\theano
ren configparser.py configparser_.py
ren configparser.pyc configparser_.pyc
cd C:\Users\Administrator
特别注意,pip安装必要软件以后,一定要把文件恢复还去,以便anadonda python 2.7能够正常运行
cd C:\Anaconda2\Lib\site-packages\theano
ren configparser_.py configparser.py
ren configparser_.pyc configparser.pyc
tensorflow-gpu==1.4.0
keras==2.1.6
anaconda search -t conda tensorflow-gpu
anaconda show HCC/tensorflow-gpu
conda install --channel https://conda.anaconda.org/HCC tensorflow-gpu
anaconda search -t conda tensorflow
anaconda show anaconda/tensorflow
conda install --channel https://conda.anaconda.org/anaconda tensorflow
现在,可以使用tensorflow, keras, opencv
// --------------------------------------------------------------------------------
了解keras配置文件
1,keras配置文件所在位置为C:\Users\Administrator\.keras
C:\Users\Administrator\.keras\keras.json
2,keras配置文件for theano
C:\Users\Administrator\.keras目录下创建keras.theano.json文件,内容如下
{
"image_dim_ordering": "th",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "theano"
}
或者
{
"image_data_format": "channels_first",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "theano"
}
3,keras配置文件for tensorflow
C:\Users\Administrator\.keras目录下创建keras.tensorflow.json文件,内容如下
{
"image_dim_ordering": "tf",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
或者
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
4,说明
在如何表示一组彩色图片的问题上,Theano和TensorFlow发生了分歧,
'th'模式,也即Theano模式会把100张RGB三通道的16×32(高为16宽为32)
彩色图表示为下面这种形式(100,3,16,32),Caffe采取的也是这种方式。
第0个维度是样本维,代表样本的数目,第1个维度是通道维,代表颜色通道数。
后面两个就是高和宽了。这种theano风格的数据组织方法,称为“channels_first”,
即通道维靠前。
而TensorFlow,的表达形式是(100,16,32,3),即把通道维放在了最后,
这种数据组织方式称为“channels_last”。
// --------------------------------------------------------------------------------
myWindowsCV环境下,验证tensorfolow和keras
Right-click your “Anaconda Prompt” and run it as administrator.
1,激活python3
Anaconda Prompt下
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,cp keras config for tensorflow
myWindowsCV Prompt下
copy /Y C:\Users\Administrator\.keras\keras.tensorflow.json C:\Users\Administrator\.keras\keras.json
type C:\Users\Administrator\.keras\keras.json
3,startup jupyter
myWindowsCV Prompt下
jupyter notebook
这时候,就可以打开ipynb笔记本文件,在Anaconda3下执行它
4,验证tensorfolow和keras,先启动jupyter,然后运行如下代码
验证tensorflow,
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
#Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
#Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#Runs the op.
print sess.run(c)
验证keras
import keras
备注:myWindowsCV Prompt下,按ctrl+C可以退出Jupyter
5,去活python3,回到python2
myWindowsCV Prompt下
deactivate
restore keras config for theano
copy /Y C:\Users\Administrator\.keras\keras.theano.json C:\Users\Administrator\.keras\keras.json
// --------------------------------------------------------------------------------
到此为止,anaconda已经装好keras和tensorflow两个库,
我们可以运行一些依赖于这两个库的软件,比如图像分类,图像识别等。
(1)好多软件包,目前仅仅支持python 2.7。
所以,我们安装python 2.7,以便进行数据科学实验。
(2)有少量的软件包,目前仅仅支持python 3.5,比如tensorflow,那怎么办?
我们可以在python 2.7下建立一个python 3.5的环境env,然后激活它,安装必要的
软件包,就可以安装相关软件和进行实验了。
其它文章已经讲述(1)。
本文讲述(2)。
// --------------------------------------------------------------------------------
在anaconda python 2.7环境下,创建anaconda python 3.5环境(env)
备注:目的是做些tensorflow的实验
参考文献
https://chrisconlan.com/installing-python-opencv-3-windows/
// --------------------------------------------------------------------------------
创建python 3.5环境,安装opencv
1,运行annaconda2(64bit)程序组的Anaconda Prompt
Anaconda Prompt下,建立环境 Anaconda3 env,创建的目录在C:\Anaconda2\envs\myWindowsCV
conda create --name myWindowsCV python=3.5
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,查看python的版本,这时候应该为3.5
python --version
3,配置anaconda 3.5的channel以便安装软件,清华的channel里面的软件好像有点老,让python找缺省的channel
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
4,安装numpy,anaconda-client,opencv3
conda install numpy
conda install anaconda-client
conda install --channel https://conda.anaconda.org/menpo opencv3
因为opencv3.4没有cv2.pyd for python3.5
所以不能用下面的办法
拷贝cv2.pyd
from
C:\opencv\build\python\2.7\x64
to
C:\Anaconda2\envs\myWindowsCV\Lib\site-packages
4.1,似乎需要安装2015版本的vc_redist.x64.exe
4.2,ensure python3.dll, python35.dll in C:\Anaconda2\envs\myWindowsCV
4.3,加入path系统变量
C:\opencv\build\bin
C:\opencv\build\x64\vc14\bin
C:\opencv\build\x64\vc15\bin
5,实验opencv
运行python shell
python
在python提示符>>>下
import cv2
cv2.__version__
import numpy as np
# Load an color image in grayscale
img = cv2.imread('s2.jpg',0)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
// --------------------------------------------------------------------------------
自行安装必要的软件包
1,运行annaconda2(64bit)程序组的Anaconda Prompt
Anaconda Prompt下
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,安装一批软件
conda install pandas
conda install matplotlib
conda install jupyter
conda install notebook
conda install scikit-learn
conda install scikit-image
conda install nltk
conda install networkx
conda install graphviz
conda install h5py
conda install hdf5
conda install pandas-datareader
conda install pillow
conda install requests
conda install scipy
conda install seaborn
conda install spyder
conda install statsmodels
conda install urllib3
conda install wheel
conda install zlib
conda install pip
conda install html5lib
3,安装cuda
下载完成后正常安装cuda_8.0.61_win10-exe
"我的电脑“-右键-属性-高级系统设置-环境变量
保证系统环境变量CUDA_PATH和CUDA_PATH_V8_0,已经创建
window"开始“-”运行“,cmd进入命令行,输入nvcc --version
顺利出现Nvidia CUDA的版本号V8.0.61
4,安装cudnn
下载解压cudnn到c:\cudnn
"我的电脑“-右键-属性-高级系统设置-环境变量
保证系统变量有path有c:\cudnn\cuda\bin
拷贝c:\cudnn下面的bin,include,lib到...CUDA\v8.0下
备注:似乎不用拷贝文件,环境变量配好就可以了
特别注意tensorflow-gpu==1.5.0以上,需要Cuda 9.0
5,安装tensorflow-gpu和keras
备注:如果没有nvidia gpu就安装tensorflow
conda install tensorflow-gpu
备注:不用这个命令
备注:不要用上面这句话盲目安装最新版本,因为tensorflow-gpu==1.5.0以上,需要Cuda 9.0
anaconda search -t conda tensorflow-gpu
用这个语句找到1.4版本的tensorflow-gpu,然后用下面的语句找到安装的指令,即第三行语句
anaconda show cjj3779/tensorflow-gpu
conda install --channel https://conda.anaconda.org/cjj3779 tensorflow-gpu
conda install keras
备注:不用这个命令
上述方法安装,如果版本太低,就用pip安装
特别注意:tensorflow-gpu==1.5.0以上,需要Cuda 9.0,所以上述第3步应该安装Cuda 9.0
pip install tensorflow-gpu==1.4.0
pip install keras==2.1.6
使用pip程序安装相关软件,出现configparser冲突,解决办法是,需要暂时对若干文件进行改名
碰到无法解决之问题,联系qxp1990@ruc.edu.cn派老师
cd C:\Anaconda2\Lib\site-packages\theano
ren configparser.py configparser_.py
ren configparser.pyc configparser_.pyc
cd C:\Users\Administrator
特别注意,pip安装必要软件以后,一定要把文件恢复还去,以便anadonda python 2.7能够正常运行
cd C:\Anaconda2\Lib\site-packages\theano
ren configparser_.py configparser.py
ren configparser_.pyc configparser.pyc
cd C:\Users\Administrator
tensorflow-gpu==1.4.0
keras==2.1.6
anaconda search -t conda tensorflow-gpu
anaconda show HCC/tensorflow-gpu
conda install --channel https://conda.anaconda.org/HCC tensorflow-gpu
anaconda search -t conda tensorflow
anaconda show anaconda/tensorflow
conda install --channel https://conda.anaconda.org/anaconda tensorflow
现在,可以使用tensorflow, keras, opencv
// --------------------------------------------------------------------------------
了解keras配置文件
1,keras配置文件所在位置为C:\Users\Administrator\.keras
C:\Users\Administrator\.keras\keras.json
2,keras配置文件for theano
C:\Users\Administrator\.keras目录下创建keras.theano.json文件,内容如下
{
"image_dim_ordering": "th",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "theano"
}
或者
{
"image_data_format": "channels_first",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "theano"
}
3,keras配置文件for tensorflow
C:\Users\Administrator\.keras目录下创建keras.tensorflow.json文件,内容如下
{
"image_dim_ordering": "tf",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
或者
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
4,说明
在如何表示一组彩色图片的问题上,Theano和TensorFlow发生了分歧,
'th'模式,也即Theano模式会把100张RGB三通道的16×32(高为16宽为32)
彩色图表示为下面这种形式(100,3,16,32),Caffe采取的也是这种方式。
第0个维度是样本维,代表样本的数目,第1个维度是通道维,代表颜色通道数。
后面两个就是高和宽了。这种theano风格的数据组织方法,称为“channels_first”,
即通道维靠前。
而TensorFlow,的表达形式是(100,16,32,3),即把通道维放在了最后,
这种数据组织方式称为“channels_last”。
// --------------------------------------------------------------------------------
myWindowsCV环境下,验证tensorfolow和keras
Right-click your “Anaconda Prompt” and run it as administrator.
1,激活python3
Anaconda Prompt下
activate myWindowsCV
备注:这时候进入myWindowsCV Prompt
2,cp keras config for tensorflow
myWindowsCV Prompt下
copy /Y C:\Users\Administrator\.keras\keras.tensorflow.json C:\Users\Administrator\.keras\keras.json
type C:\Users\Administrator\.keras\keras.json
3,startup jupyter
myWindowsCV Prompt下
jupyter notebook
这时候,就可以打开ipynb笔记本文件,在Anaconda3下执行它
4,验证tensorfolow和keras,先启动jupyter,然后运行如下代码
验证tensorflow,
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
#Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
#Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#Runs the op.
print sess.run(c)
验证keras
import keras
备注:myWindowsCV Prompt下,按ctrl+C可以退出Jupyter
5,去活python3,回到python2
myWindowsCV Prompt下
deactivate
restore keras config for theano
copy /Y C:\Users\Administrator\.keras\keras.theano.json C:\Users\Administrator\.keras\keras.json
// --------------------------------------------------------------------------------
到此为止,anaconda已经装好keras和tensorflow两个库,
我们可以运行一些依赖于这两个库的软件,比如图像分类,图像识别等。