我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分。例如,
如果代码中出现
for(i=1;i<=n;i++) OP ;
那么做了n次OP运算,如果代码中出现
fori=1;i<=n; i++)
for(j=i+1;j<=n; j++) OP;
那么做了n*(n-1)/2 次OP 操作。
现在给你已知有m层for循环操作,且每次for中变量的起始值是上一个变量的起始值+1(第一个变量的起始值是1),终止值都是一个输入的n,问最后OP有总共多少计算量。
Input
有T组case,T<=10000。每个case有两个整数m和n,0<m<=2000,0<n<=2000.
Output
对于每个case,输出一个值,表示总的计算量,也许这个数字很大,那么你只需要输出除1007留下的余数即可。
Sample Input
2
1 3
2 3
Sample Output
3
3
#include <cstdio>
#incl
ude <iostream>
#include <cstring>
#include <queue>
#include <cmath>
#include <set>
#include <algorithm>
#include <map>
#include <vector>
#define mod 1000000007
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int N = 2e3+6;
const double inf = 0x3f3f3f3f;
const double eps = 1e-6;
int f[N][N];
int main()
{
int t, n, m, i, j;
for(i = 1; i < N; ++i)
f[i][0] = f[i][i] = 1;
for(i = 1; i < N; ++i)
for(j = 1; j < i; ++j)
f[i][j] = (f[i-1][j]+f[i-1][j-1])%1007;
scanf("%d", &t);
while(t--){
scanf("%d%d", &m, &n);
printf("%d\n", f[n][m]);
}
return 0;
}