莫比乌斯反演 习题

T i p s Tips Tips:本文默认 n ≤ m ,   a ≤ b n\leq m,\: a\leq b nm,ab

[POI2007] ZAP-Queries

题目传送门

题意

给出 a , b , d a,b,d a,b,d,求满足 1 ≤ x ≤ a 1 \leq x \leq a 1xa 1 ≤ y ≤ b 1 \leq y \leq b 1yb,且 gcd ⁡ ( x , y ) = d \gcd(x,y)=d gcd(x,y)=d 的二元组 ( x , y ) (x,y) (x,y) 的数量。

1 ≤ n ≤ 5 × 1 0 4 1 \leq n \leq 5 \times 10^4 1n5×104 1 ≤ d ≤ a , b ≤ 5 × 1 0 4 1 \leq d \leq a,b \leq 5 \times 10^4 1da,b5×104

解题思路
  • 原题要求的是
    ∑ i = 1 a ∑ j = 1 b [ gcd ⁡ ( i , j ) = d ] \sum\limits_{i=1}^a\sum\limits_{j=1}^b{[\gcd(i,j)=d]} i=1aj=1b[gcd(i,j)=d]

  • i , j i,j i,j 除以 d d d
    = ∑ i = 1 ⌊ a d ⌋ ∑ j = 1 ⌊ b d ⌋ [ gcd ⁡ ( i , j ) = 1 ] =\sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}{[\gcd(i,j)=1]} =i=1daj=1db[gcd(i,j)=1]

  • 由莫比乌斯反演得
    = ∑ i = 1 ⌊ a d ⌋ ∑ j = 1 ⌊ b d ⌋ ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) =\sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum\limits_{k|\gcd(i,j)}{\mu(k)} =i=1daj=1dbkgcd(i,j)μ(k)

  • 再将 i , j i,j i,j 除以 k k k,这样就不关心 k k k 是否为 i , j i,j i,j 的约数,可以直接枚举 k k k

    = ∑ k = 1 ⌊ a d ⌋ μ ( k ) ⌊ a k d ⌋ ⌊ b k d ⌋ =\sum\limits_{k=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\mu(k){\left\lfloor\frac{a}{kd}\right\rfloor}{\left\lfloor\frac{b}{kd}\right\rfloor} =k=1daμ(k)kdakdb

  • 这个式子的后半部分可以整除分块来优化,前半部分预处理前缀和即可。在代码实现时,可以预先让 a , b a,b a,b 同除以 d d d,方便实现

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=50010;

int T,a,b,d,n,m;
int prime[N],v[N],tot,mu[N],sum[N];
LL ans;

void primes()
{
	mu[1]=1;
	for(int i=2; i<=50000; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mu[i]=-1;
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>50000/i)
				break;
			v[i*prime[j]]=prime[j];
			if(i%prime[j]==0)
				break;
			mu[prime[j]*i]=-mu[i];
		}
	}
	
	for(int i=1; i<=50000; i++)
		sum[i]=sum[i-1]+mu[i];
}
 	
int main()
{
	primes();
	
    scanf("%d",&T);
    while(T--)
    {
    	scanf("%d%d%d",&a,&b,&d);
    	n=a/d;  m=b/d;
    	if(n>m)
    		swap(n,m);
    	
    	ans=0;
    	for(int l=1,r; l<=n; l=r+1)
    	{
    		r=min(n/(n/l),m/(m/l));
    		ans+=1LL*(sum[r]-sum[l-1])*1LL*(n/l)*1LL*(m/l);
		}
		
		printf("%lld\n",ans);
	}
    
    return 0;
}

[HAOI2011] Problem b

题目传送门

题意

对于给出的 n n n 个询问,每次求有多少个数对 ( x , y ) (x,y) (x,y),满足 a ≤ x ≤ b a \le x \le b axb c ≤ y ≤ d c \le y \le d cyd,且 gcd ⁡ ( x , y ) = k \gcd(x,y) = k gcd(x,y)=k gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 函数为 x x x y y y 的最大公约数。

1 ≤ n , k ≤ 5 × 1 0 4 1 \le n,k \le 5 \times 10^4 1n,k5×104 1 ≤ a ≤ b ≤ 5 × 1 0 4 1 \le a \le b \le 5 \times 10^4 1ab5×104 1 ≤ c ≤ d ≤ 5 × 1 0 4 1 \le c \le d \le 5 \times 10^4 1cd5×104

解题思路
  • 类比上面一题 ZAP,设 f ( n , m ) f(n,m) f(n,m) 表示满足 1 ≤ x ≤ n 1 \leq x \leq n 1xn 1 ≤ y ≤ m 1 \leq y \leq m 1ym,且 gcd ⁡ ( x , y ) = k \gcd(x,y)=k gcd(x,y)=k 的二元组 ( x , y ) (x,y) (x,y) 的数量

  • 类似二维前缀和,容易得出
    a n s = f ( b , d ) − f ( a − 1 , d ) − f ( b , c − 1 ) + f ( a − 1 , c − 1 ) ans=f(b,d)-f(a-1,d)-f(b,c-1)+f(a-1,c-1) ans=f(b,d)f(a1,d)f(b,c1)+f(a1,c1)

  • 同样,可以一开始先令 a , b , c , d a,b,c,d a,b,c,d 除以 k k k,方便代码实现

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=50010;

int T,a,b,c,d,k;
int prime[N],v[N],tot,mu[N],sum[N];
LL ans;

void primes()
{
	mu[1]=1;
	for(int i=2; i<=50000; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mu[i]=-1;
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>50000/i)
				break;
			v[i*prime[j]]=prime[j];
			if(i%prime[j]==0)
				break;
			mu[prime[j]*i]=-mu[i];
		}
	}
	
	for(int i=1; i<=50000; i++)
		sum[i]=sum[i-1]+mu[i];
}

LL f(int n,int m)
{
	if(n>m)
		swap(n,m);
	LL res=0;
	for(int l=1,r; l<=n; l=r+1)
   	{
    	r=min(n/(n/l),m/(m/l));
    	res+=1LL*(sum[r]-sum[l-1])*1LL*(n/l)*1LL*(m/l);
	}
	
	return res;
}
 	
int main()
{
	primes();
	
    scanf("%d",&T);
    while(T--)
    {
    	scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    	
    	ans=0;
    	ans=f(b/k,d/k)-f((a-1)/k,d/k)-f(b/k,(c-1)/k)+f((a-1)/k,(c-1)/k);
		
		printf("%lld\n",ans);
	}
    
    return 0;
}

YY的GCD

题目传送门

题意

T T T 组数据,每组数据给定 N , M N, M N,M,求 1 ≤ x ≤ N 1 \leq x \leq N 1xN 1 ≤ y ≤ M 1 \leq y \leq M 1yM gcd ⁡ ( x , y ) \gcd(x, y) gcd(x,y) 为质数的 ( x , y ) (x, y) (x,y) 有多少对。

T = 1 0 4 T = 10^4 T=104 N , M ≤ 1 0 7 N, M \leq 10^7 N,M107

解题思路
  • p r i m e s primes primes 表示质数集合

  • 原题要求的是
    a n s = ∑ k ∈ p r i m e s ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] ans=\sum\limits_{k\in primes}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^m{[\gcd(i,j)=k]} ans=kprimesi=1nj=1m[gcd(i,j)=k]

  • 同除以 k k k 得:
    = ∑ k ∈ p r i m e s ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ gcd ⁡ ( i , j ) = k ] =\sum\limits_{k\in primes}\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}{[\gcd(i,j)=k]} =kprimesi=1knj=1km[gcd(i,j)=k]

  • 由莫比乌斯反演得
    = ∑ k ∈ p r i m e s ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) =\sum\limits_{k\in primes}\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\sum\limits_{d|\gcd(i,j)}{\mu(d)} =kprimesi=1knj=1kmdgcd(i,j)μ(d)

  • 我们枚举 d d d 得:
    = ∑ k ∈ p r i m e s ∑ d = 1 ⌊ n k ⌋ μ ( d ) ⌊ n k d ⌋ ⌊ m k d ⌋ =\sum\limits_{k\in primes}\sum\limits_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}{\mu(d)}\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor =kprimesd=1knμ(d)kdnkdm

  • T = k d T=kd T=kd,把 T T T 提到前面去
    = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ k ∣ T , k ∈ p r i m e s μ ( T k ) =\sum\limits_{T=1}^n\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\sum\limits_{k|T,k\in primes}{\mu(\frac{T}{k})} =T=1nTnTmkT,kprimesμ(kT)

  • 对于后半部分式子,我们可以在线性筛后预处理出来,再做一次整除分块即可求出答案

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=10000010;

int T,n,m;
int prime[N],v[N],tot,mu[N];
LL sum[N],g[N];

void primes()
{
	mu[1]=1;
	for(int i=2; i<=1e7; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mu[i]=-1;
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>1e7/i)
				break;
			v[i*prime[j]]=prime[j];
			if(i%prime[j]==0)
				break;
			mu[prime[j]*i]=-mu[i];
		}
	}
	
	for(int i=1; i<=tot; i++)
	{
		for(int j=1; j*prime[i]<=1e7; j++)
			g[prime[i]*j]+=mu[j]; 
	}
	
	for(int i=1; i<=1e7; i++)
		sum[i]=sum[i-1]+g[i];
}

LL cacl(int n,int m)
{
	if(n>m)
		swap(n,m);
	
	LL res=0; 
	for(int l=1,r; l<=n; l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		res+=1LL*(sum[r]-sum[l-1])*(n/l)*(m/l);
	}
	
	return res;
}
 	
int main()
{
	primes();
	
    scanf("%d",&T);
    while(T--)
    {
    	scanf("%d%d",&n,&m);
		printf("%lld\n",cacl(n,m));
	}
    
    return 0;
}

于神之怒加强版

题目传送门

题意

给定 n , m , k n,m,k n,m,k,计算

∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) k \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k i=1nj=1mgcd(i,j)k

1 0 9 + 7 10^9 + 7 109+7 取模的结果。

对于全部的测试点,保证 1 ≤ T ≤ 2 × 1 0 3 1 \leq T \leq 2 \times 10^3 1T2×103 1 ≤ n , m , k ≤ 5 × 1 0 6 1 \leq n, m, k \leq 5 \times 10^6 1n,m,k5×106

解题思路
  • 直接开始推式子
    a n s = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m d k [ gcd ⁡ ( i , j ) = d ] ans=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^m{d^k[\gcd(i,j)=d]} ans=d=1ni=1nj=1mdk[gcd(i,j)=d]

  • 除以 d d d 得:
    = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d k [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{d^k[\gcd(i,j)=1]} =d=1ni=1dnj=1dmdk[gcd(i,j)=1]
    = ∑ d = 1 n d k ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ x ∣ gcd ⁡ ( i , j ) μ ( x ) =\sum_{d=1}^n{d^k}\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{x|\gcd(i,j)}{\mu(x)} =d=1ndki=1dnj=1dmxgcd(i,j)μ(x)

  • 枚举 x x x 得:
    ∑ d = 1 n d k ∑ x = 1 ⌊ n d ⌋ μ ( x ) ⌊ n d x ⌋ ⌊ m d x ⌋ \sum_{d=1}^n{d^k}\sum_{x=1}^{\left\lfloor\frac{n}{d}\right\rfloor}{\mu(x)\left\lfloor\frac{n}{dx}\right\rfloor\left\lfloor\frac{m}{dx}\right\rfloor} d=1ndkx=1dnμ(x)dxndxm

  • 类似上一题的优化,设 T = d x T=dx T=dx 得:
    ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ d ∣ T d k μ ( T d ) \sum_{T=1}^n{\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor}\sum_{d|T}{d^k\mu(\frac{T}{d})} T=1nTnTmdTdkμ(dT)

  • 观察到, ∑ d ∣ T d k μ ( T d ) \sum\limits_{d|T}{d^k\mu(\frac{T}{d})} dTdkμ(dT)狄利克雷卷积的形式,而 f ( d ) = d k f(d)=d^k f(d)=dk μ ( T d ) \mu(\frac{T}{d}) μ(dT) 又是 积性函数,所以 g ( T ) = ∑ d ∣ T d k μ ( T d ) g(T)=\sum\limits_{d|T}{d^k\mu(\frac{T}{d})} g(T)=dTdkμ(dT) 也是积性函数。因此,我们可以考虑线性筛预处理出 g g g 的值

  • T T T 质因数分解为 T = ∏ i = 1 q p i c i T=\prod\limits_{i=1}^q{p_i^{c_i}} T=i=1qpici,则
    g ( T ) = ∏ i = 1 q g ( p i c i ) g(T)=\prod\limits_{i=1}^q{g(p_i^{c_i})} g(T)=i=1qg(pici)
    = ∏ i = 1 q ∑ d ∣ p i c i d k μ ( p i c i d ) =\prod\limits_{i=1}^q\sum_{d|p_i^{c_i}}{d^k\mu(\frac{p_i^{c_i}}{d})} =i=1qdpicidkμ(dpici)

  • 观察到,当 d = 1 , p i , p i 2 … p i c i − 2 d=1,p_i,pi^2\dots p_i^{c_i-2} d=1,pi,pi2pici2 时, μ ( p i c i d ) = 0 \mu(\frac{p_i^{c_i}}{d})=0 μ(dpici)=0,所以
    g ( T ) = ∏ i = 1 q p i ( c i − 1 ) k × μ ( p i ) + p i c i k × μ ( 1 ) g(T)=\prod\limits_{i=1}^q{p_i^{(c_i-1)k}\times\mu(p_i)}+p_i^{c_ik}\times \mu(1) g(T)=i=1qpi(ci1)k×μ(pi)+picik×μ(1)
    = ∏ i = 1 q p i ( c i − 1 ) k × ( p i k − 1 ) =\prod\limits_{i=1}^q{p_i^{(c_i-1)k}\times(p_i^k-1)} =i=1qpi(ci1)k×(pik1)

  • 这个式子是可以预处理出来的

  • 所以
    a n s = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ g ( T ) ans=\sum_{T=1}^n{\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor}g(T) ans=T=1nTnTmg(T)

  • 利用整除分块即可求解

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=5000010;
const int MOD=1e9+7;

int T,k,n,m;
int prime[N],v[N],tot;
LL g[N],mi[N],sum[N];

LL ksm(int a,int b)
{
	if(b==0)
		return 1;
	if(b==1)
		return a;
		
	LL tmp=ksm(a,b/2);
	if(b%2==0)
		return (tmp*tmp)%MOD;
	else
		return ((tmp*tmp)%MOD*(LL)a)%MOD;
}

void primes()
{
	g[1]=1;
	for(int i=2; i<=5e6; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mi[i]=ksm(i,k);
			g[i]=(mi[i]-1+MOD)%MOD; //i为质数时g(i)=i^k-1
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>5e6/i)
				break;
			v[i*prime[j]]=prime[j];
			
			if(i%prime[j]==0)
				g[i*prime[j]]=(g[i]*mi[prime[j]])%MOD; //当i和prime[j]不互质时,读者可自行证明该结论正确性
			else
				g[i*prime[j]]=(g[i]*g[prime[j]])%MOD;
		}
	}
	
	for(int i=1; i<=5e6; i++)
		sum[i]=sum[i-1]+g[i];
}

LL cacl(int n,int m)
{
	if(n>m)
		swap(n,m);
	
	LL res=0; 
	for(int l=1,r; l<=n; l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		res=(res+((sum[r]-sum[l-1]+MOD)%MOD)*(n/l)%MOD*(m/l)%MOD)%MOD;
	}
	
	return res;
}
 	
int main()
{
	scanf("%d%d",&T,&k);
	
	primes();
	
    while(T--)
    {
    	scanf("%d%d",&n,&m);
		printf("%lld\n",cacl(n,m));
	}
    
    return 0;
}

[国家集训队] Crash的数字表格 / JZPTAB

题目传送门

题意

给定 n , m n,m n,m,计算
∑ i = 1 n ∑ j = 1 m lcm ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=1}^m{\operatorname{lcm}(i,j)} i=1nj=1mlcm(i,j)
1 ≤ n , m ≤ 1 0 7 1\leq n,m \leq 10^7 1n,m107

解题思路
  • lcm ⁡ ( i , j ) \operatorname{lcm}(i,j) lcm(i,j) 变换一下得:
    a n s = ∑ i = 1 n ∑ j = 1 m i j gcd ⁡ ( i , j ) ans=\sum_{i=1}^n\sum_{j=1}^m{\frac{ij}{\gcd(i,j)}} ans=i=1nj=1mgcd(i,j)ij

  • 枚举 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j) 得:
    = ∑ i = 1 n ∑ j = 1 m ∑ d = 1 n i j d [ gcd ⁡ ( i , j ) = d ] =\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n{\frac{ij}{d}[\gcd(i,j)=d]} =i=1nj=1md=1ndij[gcd(i,j)=d]

  • 除以 d d d 得:
    = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j × d [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{ij\times d[\gcd(i,j)=1]} =d=1ni=1dnj=1dmij×d[gcd(i,j)=1]
    = ∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}^n{d}\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{ij[\gcd(i,j)=1]} =d=1ndi=1dnj=1dmij[gcd(i,j)=1]

  • 把后半部分式子单独提出来,设:
    f ( a , b ) = ∑ i = 1 a ∑ j = 1 b i j [ gcd ⁡ ( i , j ) = 1 ] f(a,b)=\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}{ij[\gcd(i,j)=1]} f(a,b)=i=1aj=1bij[gcd(i,j)=1]

  • 化简得:
    f ( a , b ) = ∑ i = 1 a ∑ j = 1 b i j ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) f(a,b)=\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}{ij\sum_{k|\gcd(i,j)}{\mu(k)}} f(a,b)=i=1aj=1bijkgcd(i,j)μ(k)
    = ∑ k = 1 a μ ( k ) ∑ i = 1 ⌊ a k ⌋ ∑ j = 1 ⌊ b k ⌋ i j × k 2 =\sum_{k=1}^{a}{\mu(k)}\sum_{i=1}^{\left\lfloor\frac{a}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{b}{k}\right\rfloor}{ij\times k^2} =k=1aμ(k)i=1kaj=1kbij×k2
    = ∑ k = 1 a μ ( k ) × k 2 ∑ i = 1 ⌊ a k ⌋ ∑ j = 1 ⌊ b k ⌋ i j =\sum_{k=1}^{a}{\mu(k)\times k^2}\sum_{i=1}^{\left\lfloor\frac{a}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{b}{k}\right\rfloor}{ij} =k=1aμ(k)×k2i=1kaj=1kbij


  • g ( a , b ) = ∑ i = 1 a ∑ j = 1 b i j g(a,b)=\sum_{i=1}^{a}\sum_{j=1}^{b}{ij} g(a,b)=i=1aj=1bij

  • 化简得:
    = ( 1 + a ) a 2 × ( b + 1 ) b 2 =\frac{(1+a)a}{2}\times \frac{(b+1)b}{2} =2(1+a)a×2(b+1)b

  • 所以,求出 g ( a , b ) g(a,b) g(a,b) 的时间复杂度为 O ( 1 ) O(1) O(1)

  • g ( a , b ) g(a,b) g(a,b) 代回 f ( a , b ) f(a,b) f(a,b) 中得:
    f ( a , b ) = ∑ k = 1 a μ ( k ) × k 2 × g ( ⌊ a k ⌋ , ⌊ b k ⌋ ) f(a,b)=\sum_{k=1}^{a}{\mu(k)\times k^2\times g(\left\lfloor\frac{a}{k}\right\rfloor,\left\lfloor\frac{b}{k}\right\rfloor)} f(a,b)=k=1aμ(k)×k2×g(ka,kb)

  • 我们利用整除分块即可求出 f ( a , b ) f(a,b) f(a,b)

  • f ( a , b ) f(a,b) f(a,b) 代回 a n s ans ans 得:
    a n s = ∑ d = 1 n d × f ( ⌊ n d ⌋ , ⌊ m d ⌋ ) ans=\sum_{d=1}^n{d}\times f(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor) ans=d=1nd×f(dn,dm)

  • 再做一次整除分块即可求解

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=10000010;
const int MOD=20101009;

int n,m;
int prime[N],v[N],tot,mu[N];
LL sum[N];

void primes()
{
	mu[1]=1;
	for(int i=2; i<=1e7; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mu[i]=-1;
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>1e7/i)
				break;
			v[i*prime[j]]=prime[j];
			if(i%prime[j]==0)
				break;
			mu[i*prime[j]]=-mu[i];
		}
	}
	
	for(int i=1; i<=1e7; i++)
		sum[i]=(sum[i-1]+1LL*(mu[i]+MOD)%MOD*i%MOD*i%MOD)%MOD;
}

LL g(int a,int b)
{
	return (1LL*a*(a+1)/2%MOD)*(1LL*b*(b+1)/2%MOD)%MOD;
}

LL f(int a,int b)
{
	if(a>b)
		swap(a,b);
		
	LL res=0;
	for(int l=1,r; l<=a; l=r+1)
	{
		r=min(a/(a/l),b/(b/l));
		res=(res+(sum[r]-sum[l-1]+MOD)%MOD*g(a/l,b/l)%MOD)%MOD;
	}
	
	return res;
}

LL calc(int a,int b)
{
	if(a>b)
		swap(a,b);
		
	LL res=0;
	for(int l=1,r; l<=a; l=r+1)
	{
		r=min(a/(a/l),b/(b/l));
		res=(res+1LL*(r-l+1)*(l+r)/2%MOD*f(a/l,b/l)%MOD)%MOD;
	}
	
	return res;
}
 		
int main()
{
	primes();
	
	scanf("%d%d",&n,&m);
	printf("%lld",calc(n,m));
    
    return 0;
}

[SDOI2014] 数表

题目传送门

题意

有一张 n × m n\times m n×m 的数表,其第 i i i 行第 j j j 列( 1 ≤ i ≤ n 1\le i\le n 1in 1 ≤ j ≤ m 1\le j\le m 1jm)的数值为能同时整除 i i i j j j 的所有自然数之和。给定 a a a,计算数表中不大于 a a a 的数之和。

1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1n,m105 1 ≤ Q ≤ 2 × 1 0 4 1\le Q\le 2\times 10^4 1Q2×104

解题思路
  • f ( x ) f(x) f(x) 表示 x x x 的因数之和


  • a n s = ∑ i = 1 n ∑ j = 1 m f ( gcd ⁡ ( i , j ) ) × [ f ( gcd ⁡ ( i , j ) ) ≤ a ] ans=\sum_{i=1}^n\sum_{j=1}^m{f(\gcd(i,j))\times[f(\gcd(i,j))\leq a]} ans=i=1nj=1mf(gcd(i,j))×[f(gcd(i,j))a]

  • 枚举 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j) 得:
    = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m f ( d ) × [ gcd ⁡ ( i , j ) = d ] × [ f ( d ) ≤ a ] =\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^m{f(d)\times [\gcd(i,j)=d]\times[f(d)\leq a]} =d=1ni=1nj=1mf(d)×[gcd(i,j)=d]×[f(d)a]
    = ∑ d = 1 n f ( d ) × [ f ( d ) ≤ a ] ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}^nf(d)\times[f(d)\leq a]\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}{[\gcd(i,j)=1]} =d=1nf(d)×[f(d)a]i=1dnj=1dm[gcd(i,j)=1]

  • 由莫比乌斯反演得:
    = ∑ d = 1 n f ( d ) × [ f ( d ) ≤ a ] ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) =\sum_{d=1}^nf(d)\times[f(d)\leq a]\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{k|\gcd(i,j)}{\mu(k)} =d=1nf(d)×[f(d)a]i=1dnj=1dmkgcd(i,j)μ(k)
    = ∑ d = 1 n f ( d ) × [ f ( d ) ≤ a ] ∑ k = 1 ⌊ n d ⌋ μ ( k ) ⌊ n k d ⌋ ⌊ m k d ⌋ =\sum_{d=1}^nf(d)\times[f(d)\leq a]\sum_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}{\mu(k)}\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor =d=1nf(d)×[f(d)a]k=1dnμ(k)kdnkdm

  • 套路设 T = k d T=kd T=kd 得:
    = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ x ∣ T μ ( T x ) × f ( x ) × [ f ( x ) ≤ a ] =\sum_{T=1}^n{\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor}\sum_{x|T}{\mu(\frac{T}{x})\times f(x)\times [f(x)\leq a]} =T=1nTnTmxTμ(xT)×f(x)×[f(x)a]

  • f ( x ) f(x) f(x) 可以在 O ( n ln ⁡ n ) O(n\ln n) O(nlnn) 的时间预处理出来

  • 因为有 a a a 的限制,当 a a a 变大时,后半部分式子也在改变。所以考虑将询问离线,按 a a a 的值从小到大排序,每次 a a a 变大时都类似插入操作,考虑用树状数组维护

  • g ( T ) = ∑ x ∣ T μ ( T x ) × f ( x ) g(T)=\sum\limits_{x|T}{\mu(\frac{T}{x})\times f(x)} g(T)=xTμ(xT)×f(x),对于所有 f ( x ) ≤ a f(x)\leq a f(x)a 来说,它会对 g ( x ) , g ( 2 x ) … g(x),g(2x)\dots g(x),g(2x) 产生贡献,所以给每个 g g g 都加上 μ ( T x ) × f ( x ) \mu(\frac{T}{x})\times f(x) μ(xT)×f(x) 即可

代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=100010,Q=20010;
const LL MOD=2147483648;

struct node
{
	int dat;
	int id;
}f[N];
struct que
{
	int n,m,s,id;
}a[Q];

int T;
int prime[N],v[N],tot,mu[N];
LL c[N],ans[N];

bool cmp(que xx,que yy)
{
	return xx.s<yy.s;
}

bool cmp2(node xx,node yy)
{
	return xx.dat<yy.dat;
}

void add(int x,LL y)
{
	for(; x<=1e5; x+=(x&-x))
		c[x]=(c[x]+y)%MOD;
}

LL ask(int x)
{
	LL s=0;
	for(; x; x-=(x&-x))
		s=(c[x]+s)%MOD;
	return s;
}

void update(int x,LL y)
{
	for(int i=1; i*x<=1e5; i++)
		add(i*x,1LL*mu[i]*y);
}

void primes()
{
	mu[1]=1;
	for(int i=2; i<=1e5; i++)
	{
		if(!v[i])
		{
			v[i]=i;
			prime[++tot]=i;
			mu[i]=-1;
		}
			
		for(int j=1; j<=tot; j++)
		{
			if(prime[j]>v[i] || prime[j]>1e5/i)
				break;
			v[i*prime[j]]=prime[j];
			
			if(i%prime[j]==0)
				break;
			mu[i*prime[j]]=-mu[i];
		}
	}
	
	for(int i=1; i<=1e5; i++)
		for(int j=1; i*j<=1e5; j++)
			f[i*j].dat=(f[i*j].dat+i)%MOD;
		
	for(int i=1; i<=1e5; i++)
		f[i].id=i;
		
	sort(f+1,f+1+100000,cmp2);
}

LL calc(int a,int b)
{
	if(a>b)
		swap(a,b);
		
	LL res=0;
	for(int l=1,r; l<=a; l=r+1)
	{
		r=min(a/(a/l),b/(b/l));
		res=(res+(ask(r)-ask(l-1)+MOD)%MOD*1LL*(a/l)%MOD*(b/l)%MOD)%MOD;
	}
	
	return res;
}
 		
int main()
{
	primes();

	scanf("%d",&T);
	for(int i=1; i<=T; i++)
		scanf("%d%d%d",&a[i].n,&a[i].m,&a[i].s),a[i].id=i;
	
	sort(a+1,a+1+T,cmp);
	
	int p=1;
	for(int i=1; i<=T; i++)
	{
		while(f[p].dat<=a[i].s && p<=1e5)
			update(f[p].id,f[p].dat),p++;
		ans[a[i].id]=calc(a[i].n,a[i].m);
	}
	
	for(int i=1; i<=T; i++)
		printf("%lld\n",ans[i]);
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值