Educational Codeforces Round 31 C. Bertown Subway

C. Bertown Subway
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The construction of subway in Bertown is almost finished! The President of Berland will visit this city soon to look at the new subway himself.

There are n stations in the subway. It was built according to the Bertown Transport Law:

  1. For each station i there exists exactly one train that goes from this station. Its destination station is pi, possibly pi = i;
  2. For each station i there exists exactly one station j such that pj = i.

The President will consider the convenience of subway after visiting it. The convenience is the number of ordered pairs (x, y) such that person can start at station x and, after taking some subway trains (possibly zero), arrive at station y (1 ≤ x, y ≤ n).

The mayor of Bertown thinks that if the subway is not convenient enough, then the President might consider installing a new mayor (and, of course, the current mayor doesn't want it to happen). Before President visits the city mayor has enough time to rebuild some paths of subway, thus changing the values of pi for not more than two subway stations. Of course, breaking the Bertown Transport Law is really bad, so the subway must be built according to the Law even after changes.

The mayor wants to do these changes in such a way that the convenience of the subway is maximized. Help him to calculate the maximum possible convenience he can get!

Input

The first line contains one integer number n (1 ≤ n ≤ 100000) — the number of stations.

The second line contains n integer numbers p1p2, ..., pn (1 ≤ pi ≤ n) — the current structure of the subway. All these numbers are distinct.

Output

Print one number — the maximum possible value of convenience.

Examples
input
3
2 1 3
output
9
input
5
1 5 4 3 2
output
17
Note

In the first example the mayor can change p2 to 3 and p3 to 1, so there will be 9 pairs: (1, 1)(1, 2)(1, 3)(2, 1)(2, 2)(2, 3)(3, 1)(3, 2)(3, 3).

In the second example the mayor can change p2 to 4 and p3 to 5.



题意:给出一个铁路连接图,问最多改变两条路,可以联通的点对数(自己到自己也算)。

思路:题目给出了铁路规则,就是每个车站只有一个起点,这就保证了每一个内部联通(两两可达)

的站点集合都是一个环。为什么呢?看图:

比如1->2->3->4,

1.如果只有4个点,那么4的终点肯定是1,如果是2,3,4的话,那就不能保证每个点只有

一个起点。

2.如果还有别的点,4的终点指向1,没问题,是环。4的终点不指向1,也得指向2,3,4之外的点,

原因同1的描述。

所以一定构成环。没有额外分支。

对于一个环,联通点对就是环内点数n*(n-1) + n(自己到自己的点对)。其实也就是n^2

选出最大的两个联通环合成一个,可以让n^2最大。其它的环再加起来就可以了。

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N = 100010;

#define PI acos(-1)
typedef long long ll;
#define INF 0x3f3f3f3f
int mod = 1000000007;
int rec[N];
bool vis[N];
int main()
{
	int n;
	while (~scanf("%d", &n))
	{
		for (int i = 1; i <= n; i++)
			scanf("%d", rec + i);
		memset(vis, 0, sizeof(vis));
		vector<int> v;
		for (int i = 1; i <= n; i++) if (!vis[i])
		{
			int cur = i, cnt = 0;
			while (!vis[i])
			{
				cnt++;
				vis[i] = true;
				i = rec[i];
			}
			v.push_back(cnt);
		}
		sort(v.begin(), v.end(), greater<int>());
		if (v.size() < 2)
		{
			ll t = v[0];
			t *= t;
			cout<<t<<endl;
		}else
		{
			ll t = v[0] + v[1];
			t *= t;
			// printf("%d %d>\n", v[0], v[1]);
			for (int i = 2; i < v.size(); i++)
			{
				t += (ll)v[i]*v[i];
			}
			cout<<t<<endl;
		}
	}
    return 0;
}



"educational codeforces round 103 (rated for div. 2)"是一个Codeforces平台上的教育性比赛,专为2级选手设计评级。以下是有关该比赛的回答。 "educational codeforces round 103 (rated for div. 2)"是一场Codeforces平台上的教育性比赛。Codeforces是一个为程序员提供竞赛和评级的在线平台。这场比赛是专为2级选手设计的,这意味着它适合那些在算法和数据结构方面已经积累了一定经验的选手参与。 与其他Codeforces比赛一样,这场比赛将由多个问题组成,选手需要根据给定的问题描述和测试用例,编写程序来解决这些问题。比赛的时限通常有两到三个小时,选手需要在规定的时间内提交他们的解答。他们的程序将在Codeforces的在线评测系统上运行,并根据程序的正确性和效率进行评分。 该比赛被称为"educational",意味着比赛的目的是教育性的,而不是针对专业的竞争性。这种教育性比赛为选手提供了一个学习和提高他们编程技能的机会。即使选手没有在比赛中获得很高的排名,他们也可以从其他选手的解决方案中学习,并通过参与讨论获得更多的知识。 参加"educational codeforces round 103 (rated for div. 2)"对于2级选手来说是很有意义的。他们可以通过解决难度适中的问题来测试和巩固他们的算法和编程技巧。另外,这种比赛对于提高解决问题能力,锻炼思维和提高团队合作能力也是非常有帮助的。 总的来说,"educational codeforces round 103 (rated for div. 2)"是一场为2级选手设计的教育性比赛,旨在提高他们的编程技能和算法能力。参与这样的比赛可以为选手提供学习和进步的机会,同时也促进了编程社区的交流与合作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值