平衡二叉树(AVL Tree) | 介绍及插入操作

AVL树是一种自平衡二叉搜索树,确保所有节点的左右子树高度差不超过1,从而保证操作效率为O(log(n))。插入新节点后,通过左旋、右旋保持平衡。文章详细介绍了插入步骤、平衡旋转的四种情况及其处理方法,并提供了完整的示例代码下载链接。
摘要由CSDN通过智能技术生成

AVL 树:

AVL 树是一种自平衡二叉搜索树 ( BST ),其中所有节点的左右子树的高度差不能超过一个。

AVL树的示例:

非 AVL 树的树示例: 

上面的树不是 AVL,因为 8 和 12 的左右子树的高度差大于 1。 

为什么要用 AVL 树?

大多数 BST 操作(例如,搜索、最大值、最小值、插入、删除……等)需要O(h)时间,其中h是 BST 的高度。对于倾斜的二叉树,这些操作的成本可能会变成O(n)。如果我们确保在每次插入和删除后树的高度保持为O(log(n)),那么我们可以保证所有这些操作的上限为O(log(n))。AVL 树的高度始终为O(log(n)),其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值