并查集算法(优化) | Union by Rank and Path Compression

本文探讨了并查集算法的效率问题及其两种优化方法:Union by Rank(根据秩合并)和Path Compression(路径压缩)。通过这些优化,可以将最坏情况下的时间复杂度降低到O(LogN)。文中还提供了不同语言的代码实现示例,供读者下载学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇文章中,我们介绍了Union-Find算法,通过union()find()操作来检测图中的循环。

然而那些操作虽然简单但却并不高效,最坏情况的时间复杂度是线性的即O(n)。这是因为,为了表示子集而创建的树可能是单向倾斜的,并变得像一个链表。

最坏情况的示例

假设有 4 个元素 0、1、2、3

最初,所有元素都是可以认为是单元素的子集。

随着我们不断进行Union()操作,元素之间的关系会变得像一个链表

上述情况类似于二叉查找树的极端情况,两者的时间复杂度都是线性的。二叉树可以通过旋转来维持平衡以保证时间复杂度维持在O(lonN),相应的我们也可以采用一些手段来优化Union()和Find()两个操作 。

第一个优化方法可以概述为,总是在更深的树的根下附加更小的深度树(rank值小的树连接到rank值大的树上)。这种技术称为union by rank。优先使用术语rank而不是 height,因为如果使用路径压缩技术(Path compression我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值