给出一个小于 232232 的非负整数。这个数可以用一个 3232 位的二进制数表示(不足 3232 位用 00 补足)。我们称这个二进制数的前 1616 位为“高位”,后 1616 位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数 13145201314520 用二进制表示为 0000 0000 0001 0100 0000 1110 1101 100000000000000101000000111011011000(添加了 1111 个前导 00 补足为 3232 位),其中前 1616 位为高位,即 0000 0000 0001 01000000000000010100;后 1616 位为低位,即 0000 1110 1101 10000000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数 0000 1110 1101 1000 0000 0000 0001 010000001110110110000000000000010100。它即是十进制的 249036820249036820。
Input
一个小于 232232 的非负整数
Output
将新的数输出
Sample 1
Inputcopy | Outputcopy |
---|---|
1314520 | 249036820 |
思路:
首先要得到每位二进制数,然后高低位交换
方法如下(用位运算):
int a[32]={0};
for(int i=0;i<32;i++)
a[i]=n>>i&1;
/*举例:
(100)>>0=100&1=0 101&1=1 (x>>i&1) 得到x二进制表示的第i位数字
// x>>i 101010101>>3=101010&1=0
// 000001
// 000000
AC代码:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
int main()
{
LL n;
cin>>n;
int a[32]={0};
for(int i=0;i<32;i++)
{
a[i]=n>>i&1; //这里的n以二进制的形式进行位运算,a[i]的值为0或1(从末位记录每位二进制数)
}
for(int i=0,j=16;i<16;i++,j++)
{
swap(a[i],a[j]);
}
LL p=1,sum=0;
for(int i=0;i<32;i++) //从末位开始,转换为十进制数
{
sum+=a[i]*p;
p*=2;
}
cout<<sum<<endl;
return 0;
}