【高低位交换,用位运算记录一个整数的每位二进制数】

给出一个小于 232232 的非负整数。这个数可以用一个 3232 位的二进制数表示(不足 3232 位用 00 补足)。我们称这个二进制数的前 1616 位为“高位”,后 1616 位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。

例如,数 13145201314520 用二进制表示为 0000 0000 0001 0100 0000 1110 1101 100000000000000101000000111011011000(添加了 1111 个前导 00 补足为 3232 位),其中前 1616 位为高位,即 0000 0000 0001 01000000000000010100;后 1616 位为低位,即 0000 1110 1101 10000000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数 0000 1110 1101 1000 0000 0000 0001 010000001110110110000000000000010100。它即是十进制的 249036820249036820。

Input

一个小于 232232 的非负整数

Output

将新的数输出

Sample 1

InputcopyOutputcopy
1314520
249036820

思路:

首先要得到每位二进制数,然后高低位交换

方法如下(用位运算):

int a[32]={0};
for(int i=0;i<32;i++)
    a[i]=n>>i&1;
/*举例:
 (100)>>0=100&1=0 101&1=1 (x>>i&1) 得到x二进制表示的第i位数字
 // x>>i 101010101>>3=101010&1=0
                   // 000001
                   // 000000

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define LL long long
int main()
{
    LL n;
    cin>>n;
    int a[32]={0};
    for(int i=0;i<32;i++)
    {
        a[i]=n>>i&1;  //这里的n以二进制的形式进行位运算,a[i]的值为0或1(从末位记录每位二进制数)
    }
    for(int i=0,j=16;i<16;i++,j++)
    {
        swap(a[i],a[j]);
    }
    LL p=1,sum=0;
    for(int i=0;i<32;i++)  //从末位开始,转换为十进制数
    {
        sum+=a[i]*p;
        p*=2;
    }
    cout<<sum<<endl;
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值