读博总结的总结:读博的那些事儿

文 | 胡津铭@知乎
本文已获作者授权,禁止二次转载

我时常给同学们推荐各种我看过的优质读博总结与建议文章,今天有了些空,整理一下我看过的优质文章。排名不分先后,想到啥写啥。

先推荐英文的资源好了,因为我最推荐的一篇文章是英文的~

英文资源

  1. Philip Guo的The PhD Grind 。PG是MIT的本硕,Stanford的PhD,非常厉害又非常乐于分享的一位大佬,我非常敬佩他,我的好友 @typeli 是他的忠实迷弟。PG虽然非常厉害,但是读PhD的前几年非常非常挣扎。毕业之后,他写了这么一本小书讲述了他PhD阶段的故事和一些经验教训。强推。同样强推的是他的另一篇文章Advice for early-stage Ph.D. students 如果只看一篇,我推荐大家看这篇。

  2. Andrej Karpathy的A Survival Guide to a PhD 。做机器学习、深度学习的同学一定要看看,写得非常好。Andrej是Fei-Fei的PhD,著名的CS231n课程就是主要由他来设计的,他还担任了两年的主讲。Andrej非常厉害,PhD毕业的时候就有6千的citation了吧,现在毕业才5、6年,已经有3w+的citation了,而且他总共只发过11篇paper,平均citation 3000+,恐怖如斯;Andrej还是个非常乐于分享的人,他有一些质量极高的博客;同时Andrej还是个逗比,经常会讲一些奇怪的冷笑话,做一些很搞笑的事情等等。总之也强烈推荐这篇。这里有中文翻译版:深度 | 李飞飞高徒 Andrej Karpathy:计算机科学博士的生存指南(附博士论文)

  3. Maithra Raghu的Reflections on my (Machine Learning) PhD Journey 。Maithra毕业于Cornell,现在在Google Brain,之前获得过福布斯30 under 30科技精英的荣誉,是深度学习+医疗的专家。这篇小文章是总结了一些她对读机器学习PhD的小建议,也非常实用。这里有中文翻译版:谷歌大脑高级研究科学家:我的六年机器学习博士生涯总结

  4. Eric Gilbert的Syllabus for Eric's PhD students 。Eric是UMich的副教授,这是他给他的学生写的一个小指南。我个人倒是觉得对我的启发性不大,不过这篇指南最后还推荐了几篇好文章,其中就有PG的文章。这里有中文翻译版:21页优雅读博指南:佐治亚理工学院助理教授Eric Gilbert撰写,入坑前必读

  5. MIT 6.869 Advanced Computer Vision课程 。的最后一课是讲How to do research, How to give a talk, 和Advices for PhD的,很多slide都非常得好,推荐所有的slide。我特别推荐这个How to do research ,是他们找MIT CS所有的教授一人给PhD一条建议,超级好玩~ 而且因为我上过不少MIT的公开课,看到了好多熟面孔,感觉很亲切~另外也是因为觉得这样的最后一课非常有意义,所以我前段时间在给浙大的学生讲《机器学习》的时候,最后一课也讲了一些类似的内容,比如下面这张slide:

6. 评论区小伙伴 @momento 补充:
http://taoxie.cs.illinois.edu/advice/

7. 评论区小伙伴@Hydro 补充:超大规模英文advice集合,真的是超全,震惊了:
https://web.ece.ucsb.edu/~yuanxie/Advice.html

暂时先整理这些吧,其他的想到了再补充~

中文资源

  1. @李沐 大神的博士这五年 。非常值得一读。我记得我在读研之前读过一遍,那时候大部分内容和术语还看不懂,前段时间我又读了一遍,感觉其中绝大部分内容我都大概知道甚至是了解了,也算是感受到了自己这几年的成长了。

  2. @田渊栋 大神的博士五年总结 。同样非常值得一读。值得一提的这两位大神在CMU读PhD的时候还是室友。

  3. @陈天奇 大神的机器学习科研的十年 。陈天奇大神是做System for ML的。这篇虽然不是读博总结,但也同样是很有价值的总结。

  4. @Showthem 大神的计算机视觉 | 哥大读博五年总结(全) 超级新鲜出炉的总结。

  5. 上海交大的陈海波老师的一名系统研究者的攀登之路 ,虽然不是读博总结,但也讲了不少他读博时候的事情。海波老师可以说是国内系统研究者的头牌了,没记错的话应该是带领团队完成了大陆在SOSP和OSDI两大系统顶会上零的突破(这两个会之前是一年开一个,而且只收40篇不到的论文,难度非常大)。海波老师领衔的IPADS实验室也是国内几乎唯一地能在两大顶会上稳定输出的实验室了。

  6. 我的导师有两个相关的slide,一个是机器学习研究入门指南,另一个是How to do research,做得都非常得好,在我看来简直就是金玉良言。不过我还没征求他的同意,就先不把slide放上来了。等征求到他的同意之后,我也会共享在这里的~

  7. @蒋炎岩 老师的读博那些事儿 。作者本人应该是在走南大的tenure track,是国内为数不多的PL大佬。这是一篇写得有趣又有用的文章,去看的话可以注意到作者的许多观点都与我不谋而合,比如好好上高质量课程很重要、选方向要选能学到东西的、看paper的时候把自己当神经网络训练、广泛阅读文献的重要性等等。另外,能感觉到蒋老师对自己教授的课程质量是非常重视的,这样的CS老师并不多见,难能可贵。我对待授课的态度也与他相同。

  8. @励静合 大佬的读博前要明白的事情 。虽然不是cs的,但也写得很好。

  9. 评论区 @郑哲东 小伙伴补充的 中科大 熊辉 为什么人前进的路总是被自己挡住

  10. 最后,推荐我自己写的硕士总结:github在这里 ,知乎版本为:https://zhuanlan.zhihu.com/p/108911948

暂时就先整理这些啦~

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

 

[1]http://read.pudn.com/downloads796/doc/3141880/pguo-PhD-grind.pdf
[2]https://pg.ucsd.edu/early-stage-PhD-advice.htm
[3]http://karpathy.github.io/2016/09/07/phd/
[4]https://mp.weixin.qq.com/s/-QQD5LlfsCa_awz1kVIT6A
[5]https://maithraraghu.com/blog/2020/Reflections_on_my_Machine_Learning_PhD_Journey/
[6]https://mp.weixin.qq.com/s/NRiy7YrXaJh3e9UHR9EJPA
[7]https://docs.google.com/document/d/11D3kHElzS2HQxTwPqcaTnU5HCJ8WGE5brTXI4KLf4dM/edit
[8]https://mp.weixin.qq.com/s/9jvlp2lfpyhba-4chN-SEw
[9]http://6.869.csail.mit.edu/fa19/
[10]http://6.869.csail.mit.edu/fa18/lecture/howToDoResearch1.pdf
[11]https://zhuanlan.zhihu.com/p/25099638
[12]http://yuandong-tian.com/five_year_summary_of_PhD.pdf
[13]https://zhuanlan.zhihu.com/p/74249758
[14]https://zhuanlan.zhihu.com/p/338193330
[15]http://dwz.date/ej6h
[16]https://zhuanlan.zhihu.com/p/82579410
[17]https://zhuanlan.zhihu.com/p/22733641
[18]http://dwz.date/ej6g
[19]https://github.com/conanhujinming/tips_for_interview/blob/master/README-zh_CN.md
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值