唯一答对“strawberry中有几个r”的开源项目,被我找到了!

strawberry中有几个r

OpenAI o1团队花了半年时间教会o1 "strawberry中有几个r",一个开源项目做对了!

这几天,想撸代码的心按不住了,发现了一个有点牛的开源项目,名为Open O1,是一个名为@OpenSource-O1 的团队,在github上开源的项目,目的是追齐OpenAI o1 模型的强大功能。可以理解是一个开源版小号o1。

不要小看这个开源项目,【strawberry中有几个】难道了绝大多数大模型的题目,它竟然对了。

这是10个主流模型的回答结果:

只有o1和Gemini答对了,正确率只有30%。

它准确地答出了有3个。

牛!

而且,只有7B和8B的参数,还是个小模型,基于LLama-8B和Qwen-7B进行的微调。目前release的模型只有两个型号:

  • OpenO1-LLama-8B-v0.1

  • OpenO1-Qwen-7B-v0.1

10月5号首次发出来,9号昨天release的模型。

它怎么做到的?

该团队通过整理了OpenAI o1模型的CoT(思维链)数据,对Llama3.1-8b和Qwen2.5-7b模型进行训练,赋予了这两个小体量模型更强的长期推理和解决问题的能力。

看一下项目主页的demo吧:

该模型的github页面:
https://github.com/OpenSource-O1/Open-O1

huggingface链接:
https://huggingface.co/spaces/happzy2633/open-o1

直接拿几个问题简单测一下咯~

9.8跟9.11哪个大?

看来,简单的逻辑题是难不倒这个模型了。

对于复杂一些的题目,这里直接贴上官方提供的示例:

  • 编码问题:用python实现一个linux终端贪吃蛇。上下左右控制移动,写到代码块中。

import curses
import time
import random

def main(stdscr):
    # 初始化curses
    curses.curs_set(0)  # 隐藏光标
    stdscr.nodelay(0)    # 等待输入
    stdscr.keypad(True)  # 启用特殊键
    height, width = stdscr.getmaxyx()
    window = curses.newwin(height, width, 0, 0)
    window.keypad(True)
    window.nodelay(1)
    window.border(0)
    window.refresh()

    # 初始化蛇和食物的位置
    snakes = [(height//2, width//2 + 1), (height//2, width//2), (height//2, width//2 -1)]
    direction = curses.KEY_RIGHT
    food = (height//2, width//2 +2)

    # 初始化得分
    score = 0

    # 生成食物
    def make_food(snakes):
        food = None
        while food is None:
            food = (random.randint(1, height-2),
                    random.randint(1, width-2))
            if food in snakes or food in [tuple(pos) for pos in snakes]:
                food = None
        return food

    food = make_food(snakes)

    # 游戏主循环
    while True:
        next_key = window.getch()
        if next_key in [curses.KEY_UP, curses.KEY_DOWN, curses.KEY_LEFT, curses.KEY_RIGHT]:
            direction = next_key

        head = snakes[0]
        new_head = (head[0], head[1])

        # 根据方向移动
        if direction == curses.KEY_UP:
            new_head = (head[0] -1, head[1])
        elif direction == curses.KEY_DOWN:
            new_head = (head[0] +1, head[1])
        elif direction == curses.KEY_LEFT:
            new_head = (head[0], head[1] -1)
        elif direction == curses.KEY_RIGHT:
            new_head = (head[0], head[1] +1)

        # 检测碰撞
        if (new_head in snakes or
            new_head[0] in [0, height -1] or
            new_head[1] in [0, width -1]):
            break

        # 更新蛇的位置
        snakes.insert(0, new_head)

        # 检测吃食物
        if new_head == food:
            score +=1
            food = make_food(snakes)
        else:
            snakes.pop()

        # 绘制蛇和食物
        window.clear()
        window.border(0)
        for pos in snakes:
            window.addch(pos[0], pos[1], '#')
        window.addch(food[0], food[1], '*')
        window.refresh()

        time.sleep(0.1)

    # 显示得分
    window.addstr(height//2, width//2 -5, f"游戏结束,得分: {score}")
    window.refresh()
    time.sleep(2)

curses.wrapper(main)

有没有小伙伴运行一下试试?

  • 数学问题:每天早上,Aya都会散步9公里,然后在咖啡店结束。一天,她以每小时s公里的速度行走,这次散步需要4小时,包括在咖啡店停留t分钟。另一天,她以每小时s+2公里的速度行走,这次散步需要2小时24分钟,包括在咖啡店停留t分钟。如果今天早上她以每小时s+(1/2)公里的速度行走,那么这次散步将花费多少分钟,包括在咖啡店停留t分钟?

  • 数据分析:分析以下医学数据,判断其是否有效,并解释原因。

患者 ID:P004

出生日期:2000-03-10

性别:男 病史:无

当前药物:阿莫西林

过敏:青霉素

实验室结果(葡萄糖 mg/dL):95

诊断:感染

治疗方案:开阿莫西林。

有一说一,看起来效果真的不错!

不过,这毕竟只是7b、8b的小模型,自然是无法还原OpenAI o1模型的全部实力。官方给出的benchmark仅与Llama3.1-8b-instruct进行了比较,在MATH、MMLU、ARC-C和BBH方面,该模型均有显著改进。

当然了,这毕竟也是第一个模型,还是0.1版本的模型。

Open-Source O1团队希望:

随着Open O1项目的进展,继续突破大语言模型的界限,不仅能实现类似OpenAI o1的CoT的性能,还能在测试时间扩展方面处于领先地位,使所有人都能使用先进的AI功能,最终,将Open O1变成人工智能进步的灯塔,造福所有人。

还有项目声明:

Open O1还远远达不到OpenAI o1的水平,但他们正在路上。第一个版本的模型提供了一些有希望的数据,但风格仍然非常接近OpenAI o1。该项目是非营利性的,团队欢迎整个社区加入该项目的发展旅程。展望未来,该团队将开源开发过程中的所有代码和材料。

另外,看到Open O1项目的贡献人一栏,发现了其一贡献者来自武汉大学,团队具体详情暂时没有公布。

最后,附上该模型的github页面:

https://github.com/OpenSource-O1/Open-O1

该模型也可在huggingface Space中使用:

https://huggingface.co/spaces/happzy2633/open-o1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值