在近年来,人工智能(AI) 领域取得了巨大的进步,而其中一员非常出色的表演者就是OpenAI的GPT系列模型。最新的GPT-4,也被称为ChatGPT,是一款基于自然语言处理技术的聊天机器人,不仅在对话和文本生成方面表现卓越,很多时候甚至能模拟编写代码。
特性
ChatGPT的核心是一个称为Transformers的深度学习模型,它书写的不仅限于英文,能构建的文章多种多样,包括叙述、讲故事、编写广告语乃至编程代码。这款技术的主要优点之一是,它可以根据所给的"提示"(Prompt)生成与提示主题相关的内容。
从技术层面,GPT模型的优势在于其自顶向下的方法,因为它可以在一个大的上下文之间进行长距离的依赖关系建模。这是编写程序时所必须的,因为程序的每个部分都可能依赖于前面的部分。
然而,也存在一些挑战,如输出的一致性和准确性问题。尽管ChatGPT可以生成出色的代码片段,但并不总能保证该代码在实际执行时完全正确,这是因为它缺乏真正执行和测试代码的权威。对于错误的理解也可能混淆,因为它更多的是学习代码语法和结构,而不是代码本身的实际语义。
示例
接下来,让我们看几个如何使用ChatGPT编写代码的例子。首先,我们将从一个简单的Python程序入手。
Prompt: “编写一个Python函数,该函数接收两个数,返回它们的和”
ChatGPT的回答可能如下:
def add_numbers(a, b):
return a + b
该函数名为add_numbers
,接收两个参数a
和b
,并返回两数之和。然后,让我们来一个稍微复杂一点的例子。
Prompt: “编写一个函数,使用Python的列表推导式生成2到20的偶数列表”
ChatGPT可能会生成以下代码:
def generate_evens():
return [i for i in range(2, 21) if i % 2 == 0]
如果你也想亲自尝试一下,这里推荐一个https://gpt4test.com,国内可以试用,无需翻墙,如果遇浏览器警告点高级/继续访问即可。
如何形成您的Prompt
有效的使用ChatGPT编程,关键在于如何形成有效的提示(Prompt)。思考以下要点可能有助于创建更有效的提示:
- 尽可能具体化:具体并清晰的新提示较可能获得您想要的输出
- 使用适当的术语:预期的编程语言,程序的性能需求,都可能影响输出的有效性
- 适当提供上下文:如果代码涉及到更大的项目或特定功能,尤其要注意给出这个部分的提示。
影响
ChatGPT的编程功能对人类社会已经产生了深远的影响。它降低了编程的门槛,使得非专业的开发者也可以生成有效的代码,并且也提高了专业开发者的效率,降低了他们调试和修改代码的时间压力。然而,同时也提出了围绕错误代码和AI权威的复杂问题。尽管有挑战认,ChatGPT和类似的工具为我们打开了一个应用AI的新纪元,我们的社会正在逐渐适应并从中获取益处。