jstorm源码之TridentTopology

在jstorm中对应TridentTopology的源码如下,TridentTopology的主要作用是用来创建trident的
一、一般使用的方式如下
// 1、创建一个topology对象
TridentTopology topology = new TridentTopology();
// 2、设置相关参数: each分片、group by分组、聚合aggregate
// 返回TridentState
TridentState wordCounts = topology.newStream("spout1", spout).parallelismHint(16)
.each(new Fields("sentence"), new Split(), new Fields("word")).groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
.parallelismHint(16);
// 3、传输
topology.newDRPCStream("words", drpc).each(new Fields("args"), new Split(), new Fields("word"))
.groupBy(new Fields("word"))
.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
.each(new Fields("count"), new FilterNull())
.aggregate(new Fields("count"), new Sum(), new Fields("sum"));
// 4、build topology
return topology.build();

二、具体源码:

package storm.trident;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;

import org.jgrapht.DirectedGraph;
import org.jgrapht.UndirectedGraph;
import org.jgrapht.alg.ConnectivityInspector;
import org.jgrapht.graph.DefaultDirectedGraph;
import org.jgrapht.graph.Pseudograph;

import com.alibaba.jstorm.client.ConfigExtension;

import backtype.storm.Config;
import backtype.storm.ILocalDRPC;
import backtype.storm.drpc.DRPCSpout;
import backtype.storm.generated.GlobalStreamId;
import backtype.storm.generated.Grouping;
import backtype.storm.generated.StormTopology;
import backtype.storm.grouping.CustomStreamGrouping;
import backtype.storm.topology.BoltDeclarer;
import backtype.storm.topology.IRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
import storm.trident.drpc.ReturnResultsReducer;
import storm.trident.fluent.GroupedStream;
import storm.trident.fluent.IAggregatableStream;
import storm.trident.fluent.UniqueIdGen;
import storm.trident.graph.GraphGrouper;
import storm.trident.graph.Group;
import storm.trident.operation.GroupedMultiReducer;
import storm.trident.operation.MultiReducer;
import storm.trident.operation.impl.FilterExecutor;
import storm.trident.operation.impl.GroupedMultiReducerExecutor;
import storm.trident.operation.impl.IdentityMultiReducer;
import storm.trident.operation.impl.JoinerMultiReducer;
import storm.trident.operation.impl.TrueFilter;
import storm.trident.partition.IdentityGrouping;
import storm.trident.planner.Node;
import storm.trident.planner.NodeStateInfo;
import storm.trident.planner.PartitionNode;
import storm.trident.planner.ProcessorNode;
import storm.trident.planner.SpoutNode;
import storm.trident.planner.SubtopologyBolt;
import storm.trident.planner.processor.EachProcessor;
import storm.trident.planner.processor.MultiReducerProcessor;
import storm.trident.spout.BatchSpoutExecutor;
import storm.trident.spout.IBatchSpout;
import storm.trident.spout.IOpaquePartitionedTridentSpout;
import storm.trident.spout.IPartitionedTridentSpout;
import storm.trident.spout.ITridentSpout;
import storm.trident.spout.OpaquePartitionedTridentSpoutExecutor;
import storm.trident.spout.PartitionedTridentSpoutExecutor;
import storm.trident.spout.RichSpoutBatchExecutor;
import storm.trident.state.StateFactory;
import storm.trident.state.StateSpec;
import storm.trident.topology.TridentTopologyBuilder;
import storm.trident.util.ErrorEdgeFactory;
import storm.trident.util.IndexedEdge;
import storm.trident.util.TridentUtils;


// graph with 3 kinds of nodes:
// operation, partition, or spout
// all operations have finishBatch and can optionally be committers
public class TridentTopology {

//TODO: add a method for drpc stream, needs to know how to automatically do returnresults, etc
// is it too expensive to do a batch per drpc request?
// 有序无环图 主要记录该topology中对应的spout、bolt以及spout和bolt之间的stream(tuples)关联关系
DefaultDirectedGraph<Node, IndexedEdge> _graph;
// 记录topology包含的node(spout/bolt)
Map<String, List<Node>> _colocate = new HashMap();
// 唯一全局Id
UniqueIdGen _gen;

// 构建一个有序无环图 初始化 DirectedGraph 以及 id记录仪(用于topology无component(spout和bolt))
public TridentTopology() {
_graph = new DefaultDirectedGraph(new ErrorEdgeFactory());
_gen = new UniqueIdGen();
}

// 构建一个有序无环图 初始化 DirectedGraph 以及 id记录仪(用于topology有component(spout和bolt))
private TridentTopology(DefaultDirectedGraph<Node, IndexedEdge> graph, Map<String, List<Node>> colocate, UniqueIdGen gen) {
_graph = graph;
_colocate = colocate;
_gen = gen;
}


// automatically turn it into a batch spout, should take parameters as to how much to batch
// public Stream newStream(IRichSpout spout) {
// Node n = new SpoutNode(getUniqueStreamId(), TridentUtils.getSingleOutputStreamFields(spout), null, spout, SpoutNode.SpoutType.BATCH);
// return addNode(n);
// }

// 根据每一个stream 在jstorm中都有一个对应的txId(关于这个txId都是UniqueIdGen来生成的从0开始递增);注意:spout有两种一种是IRichSpout另外一种是IBatchSpout
public Stream newStream(String txId, IRichSpout spout) {
return newStream(txId, new RichSpoutBatchExecutor(spout));
}

public Stream newStream(String txId, IBatchSpout spout) {
Node n = new SpoutNode(getUniqueStreamId(), spout.getOutputFields(), txId, spout, SpoutNode.SpoutType.BATCH);
return addNode(n);
}
// 根据指定的stream的streamId 、spout输出fileds、事务txId、spout、Spout的Node Type构建SpoutNode
// 并将该节点Node添加有序无环图_graph 中 同时并判断对应的_colocate是否存在该节点的信息(根据state info的id作为node的唯一标示)
public Stream newStream(String txId, ITridentSpout spout) {
Node n = new SpoutNode(getUniqueStreamId(), spout.getOutputFields(), txId, spout, SpoutNode.SpoutType.BATCH);
return addNode(n);
}

public Stream newStream(String txId, IPartitionedTridentSpout spout) {
return newStream(txId, new PartitionedTridentSpoutExecutor(spout));
}

public Stream newStream(String txId, IOpaquePartitionedTridentSpout spout) {
return newStream(txId, new OpaquePartitionedTridentSpoutExecutor(spout));
}

// 创建Drpc的stream
public Stream newDRPCStream(String function) {
return newDRPCStream(new DRPCSpout(function));
}

public Stream newDRPCStream(String function, ILocalDRPC server) {
DRPCSpout spout;
if(server==null) {
spout = new DRPCSpout(function);
} else {
spout = new DRPCSpout(function, server);
}
return newDRPCStream(spout);
}

// 根据指定的unique stream id 、单个single output fields(jstorm在trident topology中只支持single output fields集同时也不支持direct的stream)、不需要指定事务txId
// Spout Node Type(spout的节点类型)
// 将SpoutNode添加到Ttopology的有序无环图_graph中
// 同时调用stream的project将该节点添加到topology的source node中(换句话说也是在graph指定该节点node对应的source和IndexedEdge 向该节点发送数据的所有节点)
private Stream newDRPCStream(DRPCSpout spout) {
// TODO: consider adding a shuffle grouping after the spout to avoid so much routing of the args/return-info all over the place
// (at least until its possible to just pack bolt logic into the spout itself)

Node n = new SpoutNode(getUniqueStreamId(), TridentUtils.getSingleOutputStreamFields(spout), null, spout, SpoutNode.SpoutType.DRPC);
Stream nextStream = addNode(n);
// later on, this will be joined back with return-info and all the results
return nextStream.project(new Fields("args"));
}

public TridentState newStaticState(StateFactory factory) {
return newStaticState(new StateSpec(factory));
}

// 根据StateSpec参数----》唯一状态Id,通过Node构造一个new node 同时指定StateInfo
// 并该节点添加到_colocate中
// 并返回TridentState
public TridentState newStaticState(StateSpec spec) {
String stateId = getUniqueStateId();
Node n = new Node(getUniqueStreamId(), null, new Fields());
n.stateInfo = new NodeStateInfo(stateId, spec);
registerNode(n);
return new TridentState(this, n);
}

// # jstrom 里面提供的reduce和join方法只是用来完成 上游节点 输出Fields 采用指定function 完成合并(reduce)和扩展(join)
// 再通过新的OutputFields输出
// 将stream 1和stream2通过reducer处理将output fields 存放 outputFields 不再存在原有的stream1和stream2的outputfields
public Stream multiReduce(Stream s1, Stream s2, MultiReducer function, Fields outputFields) {
return multiReduce(Arrays.asList(s1, s2), function, outputFields);
}

public Stream multiReduce(Fields inputFields1, Stream s1, Fields inputFields2, Stream s2, MultiReducer function, Fields outputFields) {
return multiReduce(Arrays.asList(inputFields1, inputFields2), Arrays.asList(s1, s2), function, outputFields);
}

public Stream multiReduce(GroupedStream s1, GroupedStream s2, GroupedMultiReducer function, Fields outputFields) {
return multiReduce(Arrays.asList(s1, s2), function, outputFields);
}

public Stream multiReduce(Fields inputFields1, GroupedStream s1, Fields inputFields2, GroupedStream s2, GroupedMultiReducer function, Fields outputFields) {
return multiReduce(Arrays.asList(inputFields1, inputFields2), Arrays.asList(s1, s2), function, outputFields);
}

public Stream multiReduce(List<Stream> streams, MultiReducer function, Fields outputFields) {
return multiReduce(getAllOutputFields(streams), streams, function, outputFields);
}

public Stream multiReduce(List<GroupedStream> streams, GroupedMultiReducer function, Fields outputFields) {
return multiReduce(getAllOutputFields(streams), streams, function, outputFields);
}

public Stream multiReduce(List<Fields> inputFields, List<Stream> streams, MultiReducer function, Fields outputFields) {
List<String> names = new ArrayList<String>();
for(Stream s: streams) {
if(s._name!=null) {
names.add(s._name);
}
}
Node n = new ProcessorNode(getUniqueStreamId(), Utils.join(names, "-"), outputFields, outputFields, new MultiReducerProcessor(inputFields, function));
return addSourcedNode(streams, n);
}

/**
* process Group stream
* @param inputFields
* @param groupedStreams
* @param function
* @param outputFields
* @return
*/
public Stream multiReduce(List<Fields> inputFields, List<GroupedStream> groupedStreams, GroupedMultiReducer function, Fields outputFields) {
List<Fields> fullInputFields = new ArrayList<Fields>();
List<Stream> streams = new ArrayList<Stream>();
List<Fields> fullGroupFields = new ArrayList<Fields>();
for(int i=0; i<groupedStreams.size(); i++) {
GroupedStream gs = groupedStreams.get(i);
Fields groupFields = gs.getGroupFields();
fullGroupFields.add(groupFields);
streams.add(gs.toStream().partitionBy(groupFields));
fullInputFields.add(TridentUtils.fieldsUnion(groupFields, inputFields.get(i)));
}
return multiReduce(fullInputFields, streams, new GroupedMultiReducerExecutor(function, fullGroupFields, inputFields), outputFields);
}

public Stream merge(Fields outputFields, Stream... streams) {
return merge(outputFields, Arrays.asList(streams));
}

public Stream merge(Fields outputFields, List<Stream> streams) {
return multiReduce(streams, new IdentityMultiReducer(), outputFields);
}

public Stream merge(Stream... streams) {
return merge(Arrays.asList(streams));
}

public Stream merge(List<Stream> streams) {
return merge(streams.get(0).getOutputFields(), streams);
}

public Stream join(Stream s1, Fields joinFields1, Stream s2, Fields joinFields2, Fields outFields) {
return join(Arrays.asList(s1, s2), Arrays.asList(joinFields1, joinFields2), outFields);
}

public Stream join(List<Stream> streams, List<Fields> joinFields, Fields outFields) {
return join(streams, joinFields, outFields, JoinType.INNER);
}

public Stream join(Stream s1, Fields joinFields1, Stream s2, Fields joinFields2, Fields outFields, JoinType type) {
return join(Arrays.asList(s1, s2), Arrays.asList(joinFields1, joinFields2), outFields, type);
}

public Stream join(List<Stream> streams, List<Fields> joinFields, Fields outFields, JoinType type) {
return join(streams, joinFields, outFields, repeat(streams.size(), type));
}

public Stream join(Stream s1, Fields joinFields1, Stream s2, Fields joinFields2, Fields outFields, List<JoinType> mixed) {
return join(Arrays.asList(s1, s2), Arrays.asList(joinFields1, joinFields2), outFields, mixed);

}

public Stream join(List<Stream> streams, List<Fields> joinFields, Fields outFields, List<JoinType> mixed) {
return multiReduce(strippedInputFields(streams, joinFields),
groupedStreams(streams, joinFields),
new JoinerMultiReducer(mixed, joinFields.get(0).size(), strippedInputFields(streams, joinFields)),
outFields);
}

// 注:由于transaction不支持jstorm的batch mode 需要关闭TASK_BATCH_TUPLE = false
//
public StormTopology build() {
// Transaction is not compatible with jstorm batch mode(task.batch.tuple)
// so we close batch mode via system property
System.setProperty(ConfigExtension.TASK_BATCH_TUPLE, "false");

DefaultDirectedGraph<Node, IndexedEdge> graph = (DefaultDirectedGraph) _graph.clone();

// 在此处主要完成如下几点内容
// 1、通过使用第三方的图形库 判断整个topology的graph中component之间的connection ,并将component之间有关联的放到一个set中 那么整个topology形成的graph的集合List<Set<Node>>
// 2、 针对生成后的graph进行spout检查 spout不同时支持batch和drpc
// 3、获取每个分支中的DrpcNode 并将该分支中数据源投递 通过drpc接着后续操作
completeDRPC(graph, _colocate, _gen);

List<SpoutNode> spoutNodes = new ArrayList<SpoutNode>();

// can be regular nodes (static state) or processor nodes
Set<Node> boltNodes = new HashSet<Node>();
// 循环遍历graph的有序无环图中的各个node(bolt和spout) 判断 添加到不同的nodes中
for(Node n: graph.vertexSet()) {
if(n instanceof SpoutNode) {
spoutNodes.add((SpoutNode) n);
} else if(!(n instanceof PartitionNode)) {
boltNodes.add(n);
}
}

// 分组 group
Set<Group> initialGroups = new HashSet<Group>();
for(List<Node> colocate: _colocate.values()) {
Group g = new Group(graph, colocate);
boltNodes.removeAll(colocate);
initialGroups.add(g);
}
for(Node n: boltNodes) {
initialGroups.add(new Group(graph, n));
}

//
GraphGrouper grouper = new GraphGrouper(graph, initialGroups);
grouper.mergeFully();
Collection<Group> mergedGroups = grouper.getAllGroups();


// add identity partitions between groups
// 如下代码目前没有完全搞透
// 大体上要实现在sourceNode 和 targetNode 在不同group中 添加一个ThriftNode(PartitionNode)
// 并将该节点 填充到有序无环图中 (添加顶点(Vertex)、Edge)
for(IndexedEdge<Node> e: new HashSet<IndexedEdge>(graph.edgeSet())) {
if(!(e.source instanceof PartitionNode) && !(e.target instanceof PartitionNode)) {
Group g1 = grouper.nodeGroup(e.source);
Group g2 = grouper.nodeGroup(e.target);
// g1 being null means the source is a spout node
if(g1==null && !(e.source instanceof SpoutNode))
throw new RuntimeException("Planner exception: Null source group must indicate a spout node at this phase of planning");
if(g1==null || !g1.equals(g2)) {
graph.removeEdge(e);
PartitionNode pNode = makeIdentityPartition(e.source);
graph.addVertex(pNode);
graph.addEdge(e.source, pNode, new IndexedEdge(e.source, pNode, 0));
graph.addEdge(pNode, e.target, new IndexedEdge(pNode, e.target, e.index));
}
}
}
// if one group subscribes to the same stream with same partitioning multiple times,
// merge those together (otherwise can end up with many output streams created for that partitioning
// if need to split into multiple output streams because of same input having different
// partitioning to the group)

// this is because can't currently merge splitting logic into a spout
// not the most kosher algorithm here, since the grouper indexes are being trounced via the adding of nodes to random groups, but it
// works out
// 通过指定的Group获取其额外的PartitionNode
// 再根据指定outputFields生成唯一的Node
// 同时找出PartitionNode所对应的parent node 和 该节点的edge信息
// 清除原有节点
// 构建新的节点 idNode和newPartitonNode 设置相关的vertex 和 edges 重新添加到graph中
//
List<Node> forNewGroups = new ArrayList<Node>();
for(Group g: mergedGroups) {
for(PartitionNode n: extraPartitionInputs(g)) {
Node idNode = makeIdentityNode(n.allOutputFields);
Node newPartitionNode = new PartitionNode(idNode.streamId, n.name, idNode.allOutputFields, n.thriftGrouping);
Node parentNode = TridentUtils.getParent(graph, n);
Set<IndexedEdge> outgoing = graph.outgoingEdgesOf(n);
graph.removeVertex(n);

graph.addVertex(idNode);
graph.addVertex(newPartitionNode);
addEdge(graph, parentNode, idNode, 0);
addEdge(graph, idNode, newPartitionNode, 0);
for(IndexedEdge e: outgoing) {
addEdge(graph, newPartitionNode, e.target, e.index);
}
Group parentGroup = grouper.nodeGroup(parentNode);
if(parentGroup==null) {
forNewGroups.add(idNode);
} else {
parentGroup.nodes.add(idNode);
}
}
}
// TODO: in the future, want a way to include this logic in the spout itself,
// or make it unecessary by having storm include metadata about which grouping a tuple
// came from

for(Node n: forNewGroups) {
grouper.addGroup(new Group(graph, n));
}

// add in spouts as groups so we can get parallelisms
for(Node n: spoutNodes) {
grouper.addGroup(new Group(graph, n));
}
// 每次添加新的group之后需要重新生成index
grouper.reindex();
mergedGroups = grouper.getAllGroups();


Map<Node, String> batchGroupMap = new HashMap();
//
List<Set<Node>> connectedComponents = new ConnectivityInspector<Node, IndexedEdge>(graph).connectedSets();
for(int i=0; i<connectedComponents.size(); i++) {
String groupId = "bg" + i;
for(Node n: connectedComponents.get(i)) {
batchGroupMap.put(n, groupId);
}
}

// System.out.println("GRAPH:");
// System.out.println(graph);
// 计算parallelism
Map<Group, Integer> parallelisms = getGroupParallelisms(graph, grouper, mergedGroups);
// 创建 topology builder
TridentTopologyBuilder builder = new TridentTopologyBuilder();

Map<Node, String> spoutIds = genSpoutIds(spoutNodes);
Map<Group, String> boltIds = genBoltIds(mergedGroups);
// 设置 spout
for(SpoutNode sn: spoutNodes) {
Integer parallelism = parallelisms.get(grouper.nodeGroup(sn));
if(sn.type == SpoutNode.SpoutType.DRPC) {
builder.setBatchPerTupleSpout(spoutIds.get(sn), sn.streamId,
(IRichSpout) sn.spout, parallelism, batchGroupMap.get(sn));
} else {
ITridentSpout s;
if(sn.spout instanceof IBatchSpout) {
s = new BatchSpoutExecutor((IBatchSpout)sn.spout);
} else if(sn.spout instanceof ITridentSpout) {
s = (ITridentSpout) sn.spout;
} else {
throw new RuntimeException("Regular rich spouts not supported yet... try wrapping in a RichSpoutBatchExecutor");
// TODO: handle regular rich spout without batches (need lots of updates to support this throughout)
}
builder.setSpout(spoutIds.get(sn), sn.streamId, sn.txId, s, parallelism, batchGroupMap.get(sn));
}
}
// 设置bolt
for(Group g: mergedGroups) {
if(!isSpoutGroup(g)) {
Integer p = parallelisms.get(g);
Map<String, String> streamToGroup = getOutputStreamBatchGroups(g, batchGroupMap);
BoltDeclarer d = builder.setBolt(boltIds.get(g), new SubtopologyBolt(graph, g.nodes, batchGroupMap), p,
committerBatches(g, batchGroupMap), streamToGroup);
Collection<PartitionNode> inputs = uniquedSubscriptions(externalGroupInputs(g));
for(PartitionNode n: inputs) {
Node parent = TridentUtils.getParent(graph, n);
String componentId;
if(parent instanceof SpoutNode) {
componentId = spoutIds.get(parent);
} else {
componentId = boltIds.get(grouper.nodeGroup(parent));
}
d.grouping(new GlobalStreamId(componentId, n.streamId), n.thriftGrouping);
}
}
}
// 构建topology
return builder.buildTopology();
}

private static void completeDRPC(DefaultDirectedGraph<Node, IndexedEdge> graph, Map<String, List<Node>> colocate, UniqueIdGen gen) {
List<Set<Node>> connectedComponents = new ConnectivityInspector<Node, IndexedEdge>(graph).connectedSets();

for(Set<Node> g: connectedComponents) {
checkValidJoins(g);
}

TridentTopology helper = new TridentTopology(graph, colocate, gen);
for(Set<Node> g: connectedComponents) {
SpoutNode drpcNode = getDRPCSpoutNode(g);
if(drpcNode!=null) {
Stream lastStream = new Stream(helper, null, getLastAddedNode(g));
Stream s = new Stream(helper, null, drpcNode);
helper.multiReduce(
s.project(new Fields("return-info"))
.batchGlobal(),
lastStream.batchGlobal(),
new ReturnResultsReducer(),
new Fields());
}
}
}

private static Node getLastAddedNode(Collection<Node> g) {
Node ret = null;
for(Node n: g) {
if(ret==null || n.creationIndex > ret.creationIndex) {
ret = n;
}
}
return ret;
}

//returns null if it's not a drpc group
private static SpoutNode getDRPCSpoutNode(Collection<Node> g) {
for(Node n: g) {
if(n instanceof SpoutNode) {
SpoutNode.SpoutType type = ((SpoutNode) n).type;
if(type==SpoutNode.SpoutType.DRPC) {
return (SpoutNode) n;
}
}
}
return null;
}

private static void checkValidJoins(Collection<Node> g) {
boolean hasDRPCSpout = false;
boolean hasBatchSpout = false;
for(Node n: g) {
if(n instanceof SpoutNode) {
SpoutNode.SpoutType type = ((SpoutNode) n).type;
if(type==SpoutNode.SpoutType.BATCH) {
hasBatchSpout = true;
} else if(type==SpoutNode.SpoutType.DRPC) {
hasDRPCSpout = true;
}
}
}
if(hasBatchSpout && hasDRPCSpout) {
throw new RuntimeException("Cannot join DRPC stream with streams originating from other spouts");
}
}

private static boolean isSpoutGroup(Group g) {
return g.nodes.size() == 1 && g.nodes.iterator().next() instanceof SpoutNode;
}

private static Collection<PartitionNode> uniquedSubscriptions(Set<PartitionNode> subscriptions) {
Map<String, PartitionNode> ret = new HashMap();
for(PartitionNode n: subscriptions) {
PartitionNode curr = ret.get(n.streamId);
if(curr!=null && !curr.thriftGrouping.equals(n.thriftGrouping)) {
throw new RuntimeException("Multiple subscriptions to the same stream with different groupings. Should be impossible since that is explicitly guarded against.");
}
ret.put(n.streamId, n);
}
return ret.values();
}

private static Map<Node, String> genSpoutIds(Collection<SpoutNode> spoutNodes) {
Map<Node, String> ret = new HashMap();
int ctr = 0;
for(SpoutNode n: spoutNodes) {
ret.put(n, "spout" + ctr);
ctr++;
}
return ret;
}

private static Map<Group, String> genBoltIds(Collection<Group> groups) {
Map<Group, String> ret = new HashMap();
int ctr = 0;
for(Group g: groups) {
if(!isSpoutGroup(g)) {
List<String> name = new ArrayList();
name.add("b");
name.add("" + ctr);
String groupName = getGroupName(g);
if(groupName!=null && !groupName.isEmpty()) {
name.add(getGroupName(g));
}
ret.put(g, Utils.join(name, "-"));
ctr++;
}
}
return ret;
}

private static String getGroupName(Group g) {
TreeMap<Integer, String> sortedNames = new TreeMap();
for(Node n: g.nodes) {
if(n.name!=null) {
sortedNames.put(n.creationIndex, n.name);
}
}
List<String> names = new ArrayList<String>();
String prevName = null;
for(String n: sortedNames.values()) {
if(prevName==null || !n.equals(prevName)) {
prevName = n;
names.add(n);
}
}
return Utils.join(names, "-");
}

private static Map<String, String> getOutputStreamBatchGroups(Group g, Map<Node, String> batchGroupMap) {
Map<String, String> ret = new HashMap();
Set<PartitionNode> externalGroupOutputs = externalGroupOutputs(g);
for(PartitionNode n: externalGroupOutputs) {
ret.put(n.streamId, batchGroupMap.get(n));
}
return ret;
}

private static Set<String> committerBatches(Group g, Map<Node, String> batchGroupMap) {
Set<String> ret = new HashSet();
for(Node n: g.nodes) {
if(n instanceof ProcessorNode) {
if(((ProcessorNode) n).committer) {
ret.add(batchGroupMap.get(n));
}
}
}
return ret;
}

private static Map<Group, Integer> getGroupParallelisms(DirectedGraph<Node, IndexedEdge> graph, GraphGrouper grouper, Collection<Group> groups) {
UndirectedGraph<Group, Object> equivs = new Pseudograph<Group, Object>(Object.class);
for(Group g: groups) {
equivs.addVertex(g);
}
for(Group g: groups) {
for(PartitionNode n: externalGroupInputs(g)) {
if(isIdentityPartition(n)) {
Node parent = TridentUtils.getParent(graph, n);
Group parentGroup = grouper.nodeGroup(parent);
if(parentGroup!=null && !parentGroup.equals(g)) {
equivs.addEdge(parentGroup, g);
}
}
}
}

Map<Group, Integer> ret = new HashMap();
List<Set<Group>> equivGroups = new ConnectivityInspector<Group, Object>(equivs).connectedSets();
for(Set<Group> equivGroup: equivGroups) {
Integer fixedP = getFixedParallelism(equivGroup);
Integer maxP = getMaxParallelism(equivGroup);
if(fixedP!=null && maxP!=null && maxP < fixedP) {
throw new RuntimeException("Parallelism is fixed to " + fixedP + " but max parallelism is less than that: " + maxP);
}


Integer p = 1;
for(Group g: equivGroup) {
for(Node n: g.nodes) {
if(n.parallelismHint!=null) {
p = Math.max(p, n.parallelismHint);
}
}
}
if(maxP!=null) p = Math.min(maxP, p);

if(fixedP!=null) p = fixedP;
for(Group g: equivGroup) {
ret.put(g, p);
}
}
return ret;
}

private static Integer getMaxParallelism(Set<Group> groups) {
Integer ret = null;
for(Group g: groups) {
if(isSpoutGroup(g)) {
SpoutNode n = (SpoutNode) g.nodes.iterator().next();
Map conf = getSpoutComponentConfig(n.spout);
if(conf==null) conf = new HashMap();
Number maxP = (Number) conf.get(Config.TOPOLOGY_MAX_TASK_PARALLELISM);
if(maxP!=null) {
if(ret==null) ret = maxP.intValue();
else ret = Math.min(ret, maxP.intValue());
}
}
}
return ret;
}

private static Map getSpoutComponentConfig(Object spout) {
if(spout instanceof IRichSpout) {
return ((IRichSpout) spout).getComponentConfiguration();
} else if (spout instanceof IBatchSpout) {
return ((IBatchSpout) spout).getComponentConfiguration();
} else {
return ((ITridentSpout) spout).getComponentConfiguration();
}
}

private static Integer getFixedParallelism(Set<Group> groups) {
Integer ret = null;
for(Group g: groups) {
for(Node n: g.nodes) {
if(n.stateInfo != null && n.stateInfo.spec.requiredNumPartitions!=null) {
int reqPartitions = n.stateInfo.spec.requiredNumPartitions;
if(ret!=null && ret!=reqPartitions) {
throw new RuntimeException("Cannot have one group have fixed parallelism of two different values");
}
ret = reqPartitions;
}
}
}
return ret;
}

private static boolean isIdentityPartition(PartitionNode n) {
Grouping g = n.thriftGrouping;
if(g.is_set_custom_serialized()) {
CustomStreamGrouping csg = (CustomStreamGrouping) Utils.javaDeserialize(g.get_custom_serialized(), Serializable.class);
return csg instanceof IdentityGrouping;
}
return false;
}

private static void addEdge(DirectedGraph g, Object source, Object target, int index) {
g.addEdge(source, target, new IndexedEdge(source, target, index));
}

private Node makeIdentityNode(Fields allOutputFields) {
return new ProcessorNode(getUniqueStreamId(), null, allOutputFields, new Fields(),
new EachProcessor(new Fields(), new FilterExecutor(new TrueFilter())));
}

private static List<PartitionNode> extraPartitionInputs(Group g) {
List<PartitionNode> ret = new ArrayList();
Set<PartitionNode> inputs = externalGroupInputs(g);
Map<String, List<PartitionNode>> grouped = new HashMap();
for(PartitionNode n: inputs) {
if(!grouped.containsKey(n.streamId)) {
grouped.put(n.streamId, new ArrayList());
}
grouped.get(n.streamId).add(n);
}
for(List<PartitionNode> group: grouped.values()) {
PartitionNode anchor = group.get(0);
for(int i=1; i<group.size(); i++) {
PartitionNode n = group.get(i);
if(!n.thriftGrouping.equals(anchor.thriftGrouping)) {
ret.add(n);
}
}
}
return ret;
}

private static Set<PartitionNode> externalGroupInputs(Group g) {
Set<PartitionNode> ret = new HashSet();
for(Node n: g.incomingNodes()) {
if(n instanceof PartitionNode) {
ret.add((PartitionNode) n);
}
}
return ret;
}

private static Set<PartitionNode> externalGroupOutputs(Group g) {
Set<PartitionNode> ret = new HashSet();
for(Node n: g.outgoingNodes()) {
if(n instanceof PartitionNode) {
ret.add((PartitionNode) n);
}
}
return ret;
}

private static PartitionNode makeIdentityPartition(Node basis) {
return new PartitionNode(basis.streamId, basis.name, basis.allOutputFields,
Grouping.custom_serialized(Utils.javaSerialize(new IdentityGrouping())));
}


protected String getUniqueStreamId() {
return _gen.getUniqueStreamId();
}

protected String getUniqueStateId() {
return _gen.getUniqueStateId();
}

protected void registerNode(Node n) {
_graph.addVertex(n);
if(n.stateInfo!=null) {
String id = n.stateInfo.id;
if(!_colocate.containsKey(id)) {
_colocate.put(id, new ArrayList());
}
_colocate.get(id).add(n);
}
}

protected Stream addNode(Node n) {
registerNode(n);
return new Stream(this, n.name, n);
}

protected void registerSourcedNode(List<Stream> sources, Node newNode) {
registerNode(newNode);
int streamIndex = 0;
for(Stream s: sources) {
_graph.addEdge(s._node, newNode, new IndexedEdge(s._node, newNode, streamIndex));
streamIndex++;
}
}

protected Stream addSourcedNode(List<Stream> sources, Node newNode) {
registerSourcedNode(sources, newNode);
return new Stream(this, newNode.name, newNode);
}

protected TridentState addSourcedStateNode(List<Stream> sources, Node newNode) {
registerSourcedNode(sources, newNode);
return new TridentState(this, newNode);
}

protected Stream addSourcedNode(Stream source, Node newNode) {
return addSourcedNode(Arrays.asList(source), newNode);
}

protected TridentState addSourcedStateNode(Stream source, Node newNode) {
return addSourcedStateNode(Arrays.asList(source), newNode);
}

private static List<Fields> getAllOutputFields(List streams) {
List<Fields> ret = new ArrayList<Fields>();
for(Object o: streams) {
ret.add(((IAggregatableStream) o).getOutputFields());
}
return ret;
}


private static List<GroupedStream> groupedStreams(List<Stream> streams, List<Fields> joinFields) {
List<GroupedStream> ret = new ArrayList<GroupedStream>();
for(int i=0; i<streams.size(); i++) {
ret.add(streams.get(i).groupBy(joinFields.get(i)));
}
return ret;
}

private static List<Fields> strippedInputFields(List<Stream> streams, List<Fields> joinFields) {
List<Fields> ret = new ArrayList<Fields>();
for(int i=0; i<streams.size(); i++) {
ret.add(TridentUtils.fieldsSubtract(streams.get(i).getOutputFields(), joinFields.get(i)));
}
return ret;
}

private static List<JoinType> repeat(int n, JoinType type) {
List<JoinType> ret = new ArrayList<JoinType>();
for(int i=0; i<n; i++) {
ret.add(type);
}
return ret;
}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值