看懂巴菲特推荐的指数基金定投,Python验证

最近身边的朋友都陆续走上了工作岗位,领到了人生中的第一份工资,但大部分人都不知道该怎么处理这样一笔钱,最终也只能放到余额宝中。也有不少的朋友跑来问我,知道我平时研究股票,下面是我这一年的投资收益,还不错,但我还是劝说他们股市有风险,入市需谨慎。其实股票投资还是一个挺大的系统工程,但一旦研究进去了就...

2017-12-10 13:15:30

阅读数 3127

评论数 5

学习记录

1、pandas中的DataFrame 2、pandas下的DataFrame画图参数 3、PANDAS 数据合并与重塑(concat篇) 4、python进行机器学习(一)之数据预处理 5、pd.get_dummies(prefix=) 计算哑变量矩阵,可指定列前缀 6、Pandas的 loc ...

2017-11-19 09:09:39

阅读数 147

评论数 0

机器学习深入与强化--工作流程与模型优化

实际建模之前,需要做数据的处理,首先是数据清洗,2点,然后是数据采样,因为大部分模型对正负样本的比例都十分敏感。 之后非常重要的就是特征工程,它包括特征处理和特征选择两部分,首先是特征处理,针对不同类型的特征值进行处理。特征选择包括 过滤型、包裹型和内嵌型,过滤型考虑单个特征与y值之间的相关度...

2017-09-27 21:49:53

阅读数 200

评论数 0

机器学习深入与强化--特征工程

机器学习算法是一个架子,特征需要我们自己去处理,做出更好的特征,让算法去学习,从而达到更好的效果。 意义中灵活性指的是,如果使用的是简单的LR,处理起来更灵活,更好控制。 做的都是一些基础的事情,比如: 1、跑数据,但互联网的数据都是大数据,不会存在一台服务器上,一般存在HDFS或者Hive表里...

2017-09-25 23:04:44

阅读数 215

评论数 0

机器学习深入与强化--回归分析与工程应用

线性回归与逻辑回归 主要是三个概念:损失函数、梯度下降、过拟合与正则化 1、线性回归——连续值变量的预测

2017-09-24 17:38:55

阅读数 296

评论数 0

机器学习深入与强化--数学基础(4)

一般优化问题:无约束和有约束 无约束: 综上,无约束忧化直接分析法的局限: 局限一:导数有可能求不出来 局限二:即便求出导数,导数=0的解可能就不出来,比如导数本身就是高维函数 局限三:即便是解出来了,对于有些高度非线性矩阵,解也有可能是一个集合的形式,找一个最小...

2017-09-24 14:09:21

阅读数 306

评论数 0

机器学习深入与强化--数学基础(3)

矩阵分析与应用 从行视图来看,方程有解就是在坐标系中直线相交,平面相交 从列试图来看,方程的解就是这些列向量的线性组合。

2017-09-20 22:38:02

阅读数 213

评论数 0

机器学习深入与强化--数学基础(2)

一、概率与统计 1、不是为了学习概率与统计,而是为了进行机器学习而补充相关的概率统计知识。 2、概率与统计的水很深,不必强求全面。 3、关键是打通概率与统计和机器学习的关系。 二、概率与统计的差别:两种相反的思路 概率:已知总体,求某种事件发生的概率。 统计:已知事件,估计产生这个时间的总体的...

2017-09-19 20:33:03

阅读数 338

评论数 0

机器学习深入与强化--数学基础(1)

数学基础十分重要!!! 如果不掌握这些数学基础知识,不了解机器学习算法的底层数学逻辑,仅仅知道它在某个场景下如何使用,相当于是把算法当做一个黑盒在使用——把数据喂进去,拿出来模型。但是如果此时模型的效果并未达到理想的要求,如何调优就会成为一个很大的难题。 一、夹逼定理 sinx sinx为...

2017-09-17 18:00:28

阅读数 310

评论数 0

机器学习深入与强化--概念

一、机器学习的概念 计算机模拟人的学习行为,以获取新的知识和经验,并重新组织已有的知识使之不断的完善。简单说就是,计算机从数据中学习出规律和模式,以应用在新的数据上做预测任务。 二、人工智能(AI)、机器学习(ML)和深度学习(DL) 三者的关系可以用如下的同心圆进行表达。一种技术的发展

2017-09-17 16:51:57

阅读数 165

评论数 0

小白学习Machine Learning in Action-机器学习实战------决策树

书中说:k近邻算法可以完成很多分类任务,但它最大的缺点就是无法给出数据的内在含义,决策树的主要优势就在于数据形式很容易理解。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终使用这些机器从数据集中创造的规则。 决策树算法的学习分为如下几个步骤: 一、从数学上讨论如何划分数据集...

2017-08-27 19:35:11

阅读数 471

评论数 0

小白学习Machine Learning in Action-机器学习实战------分类之k近邻算法

k近邻算法思想:根据测量不同特征值之间的距离来进行分类。

2017-08-20 17:48:52

阅读数 187

评论数 0

小白学习Machine Learning in Action-机器学习实战------Python基础

书中介绍python基础时,使用了Numpy模块,其中存在两种不同的数据类型——矩阵matrix和数组array,都可以用来处理行列表示的数字元素。但两者之间存在哪些不同呢? 当一个程序中既有matrix又有array时,我是很茫然的,为什么这里要用matrix,哪里要用array?什么时候应该用...

2017-08-19 23:35:19

阅读数 227

评论数 0

Eclipse跨工程调用类

在Eclipse中,有时候需要跨工程调用其他工程中的方法。如下面有两个Java Project : 如果要在A工程中调用B工程中的类,可以将B工程添加到A工程中:   A---- >Build Path---- >Configure Build Path----...

2016-12-04 13:42:24

阅读数 1266

评论数 0

Linux挂载系统光盘,配置系统本地yum源

今天在CentOS系统挂载光盘时出错: 处理方法: 然后就可以了

2016-11-26 18:13:04

阅读数 730

评论数 0

《高可用的HDFS》——元数据备份方案

元数据备份目录项主要涉及的场景: 1、NameNode启示时,从元数据备份目录中检查最新的fsimage和edits,读取到内存合并,然后将fsimage写回到指定的备份目录,并且重置edits 2、元数据更新时,NameNode将日志写入edits 3、做cheakpoint时,namen...

2016-11-16 16:30:14

阅读数 1261

评论数 0

Linux Shell——初识Shell

Shell的默认赋值是字符串赋值,

2016-11-15 23:10:06

阅读数 243

评论数 0

《高可用的HDFS》——元数据解析

元数据有三类信息: 1、文件和目录自身的属性信息 2、记录文件内容存储相关信息 3、记录hdfs中所有DataNode的信息 INode:文件和目录是文件系统的基本元素,hdfs将其抽象为INode,每一个文件或目录都对应一个唯一的INode,其存储了名字信息、创建时间、修改时间、...

2016-11-15 21:49:42

阅读数 1155

评论数 0

TPC-W安装详解

所用系统CentOS6.3 32位 TPC-W下载 1、安装jdk(略) 2、安装MySQL

2016-10-11 20:13:54

阅读数 530

评论数 0

MySQL启动时报错:ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/my

第一次安装mysql后,企图进入mysql,结果: [root@hmaster hw]# mysql ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.soc...

2016-10-11 15:10:13

阅读数 798

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭