哈希表理论基础
哈希表(Hash table,也叫散列表),是根据键(Key)直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做哈希函数,存放记录的数组称做哈希表。
常见的三种哈希结构
更多 api 可以查询这个网站 C语言中文网
当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。
-
数组
-
set (集合)
-
map (映射)
在C++中,set 和 map 分别提供以下三种数据结构,其底层实现以及优劣如下表所示:
集合 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::set | 红黑树 | 有序 | 否 | 否 | O(log n) | O(log n) |
std::multiset | 红黑树 | 有序 | 是 | 否 | O(logn) | O(logn) |
std::unordered_set | 哈希表 | 无序 | 否 | 否 | O(1) | O(1) |
std::unordered_set 底层实现为哈希表,std::set 和 std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以 key 值是有序的,但 key 不可以修改,改动 key 值会导致整棵树的错乱,所以只能删除和增加。
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(logn) | O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(log n) | O(log n) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
std::unordered_map 底层实现为哈希表,std::map 和 std::multimap 的底层实现是红黑树。同理,std::map 和 std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。
当我们要使用集合来解决哈希问题的时候,优先使用 unordered_set,因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set,如果要求不仅有序还要有重复数据的话,那么就用 multiset。
那么再来看一下 map ,在 map 是一个 key value 的数据结构,map 中,对 key 是有限制,对 value 没有限制的,因为key的存储方式使用红黑树实现的。
其他语言例如:java 里的 HashMap ,TreeMap 都是一样的原理。可以灵活贯通。
虽然std::set、std::multiset 的底层实现是红黑树,不是哈希表,std::set、std::multiset 使用红黑树来索引和存储,不过给我们的使用方式,还是哈希法的使用方式,即key和value。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。map 也是一样的道理。
总结
总结一下,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。
但是哈希法也是牺牲了空间换取了时间,因为我们要使用额外的数组,set或者是map来存放数据,才能实现快速的查找。
如果在做面试题目的时候遇到需要判断一个元素是否出现过的场景也应该第一时间想到哈希法!
242.有效的字母异位词
1、题目
2、题解
定义一个数组叫做 record
用来上记录字符串s里字符出现的次数。
需要把字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。
在遍历字符串 s 的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串 s 中字符出现的次数,统计出来了。
那如何检查字符串 t 中是否出现了这些字符?只需要在遍历字符串 t 的时候,对 t 中出现的字符映射哈希表索引上的数值再做-1的操作。
那么最后检查一下,record 数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false
。
最后如果 record 数组所有元素都为零0,说明字符串 s 和 t 是字母异位词,return true
。
class Solution {
public:
bool isAnagram(string s, string t) {
int dic[26]={0};
for (int i = 0; i < s.size(); i++)
{
dic[s[i]-'a']++;
}
for (int i = 0; i < t.size(); i++)
{
dic[t[i]-'a']--;
}
for (int i = 0; i < 26; i++)
{
if(dic[i]!=0)
{
return false;
}
}
return true;
}
};
349.两个数组的交集
1、题目
2、题解
这道题目,主要要学会使用一种哈希数据结构:unordered_set,这个数据结构可以解决很多类似的问题。
注意题目特意说明:输出结果中的每个元素一定是唯一的,也就是说输出的结果的去重的, 同时可以不考虑输出结果的顺序
用数组来做哈希表也是不错的选择,例如上一题
但是要注意,使用数组来做哈希的题目,是因为题目都限制了数值的大小。
而这道题目没有限制数值的大小,就无法使用数组来做哈希表了。
而且如果哈希值比较少、特别分散、跨度非常大,使用数组就造成空间的极大浪费。
此时就要使用另一种结构体了,set ,关于set,C++ 给提供了如下三种可用的数据结构:
-
std::set
-
std::multiset
-
std::unordered_set
std::set 和 std::multiset 底层实现都是红黑树,std::unordered_set 的底层实现是哈希表, 使用unordered_set 读写效率是最高的,并不需要对数据进行排序,而且还不要让数据重复,所以选择unordered_set。
思路如图所示:
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> dic;
unordered_set<int> ans;
vector<int> result;
//初始化dic,也可以使用unordered_set<int> dic(nums1.begin(),nums1.end()); 来初始化
for (int i = 0; i < nums1.size(); i++)
{
dic.insert(nums1[i]);
}
for (int i = 0; i < nums2.size(); i++)
{
if(dic.find(nums2[i])!=dic.end())
{
ans.insert(nums2[i]);
}
}
for(auto i:ans)
{
result.push_back(i);
}
return result;
//也可以使用 return vector<int>(ans.begin(),ans.end()); 这一种强制类型转换的语法形式。在这里,它将ans中的元素转换为vector<int>类型,并将其作为函数的返回值返回。
}
};
3、总结
当题目需要使用一个无限制大小的容器来存放单个数据时,可以想到 set
202.快乐数
1、题目
2、题解
这道题目看上去貌似一道数学问题,其实并不是!
题目中说了会无限循环,那么也就是说求和的过程中,sum会重复出现,这对解题很重要!
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法了。
所以这道题目使用哈希法,来判断这个 sum 是否重复出现,如果重复了就是 return false, 否则一直找到 sum 为1为止。
判断 sum 是否重复出现就可以使用 unordered_set。
还有一个难点就是求和的过程,如果对取数值各个位上的单数操作不熟悉的话,做这道题也会比较艰难。
class Solution {
public:
bool isHappy(int n)
{
unordered_set<int> dic;
int sum = 0;
while (sum != 1)
{
sum = 0;
while (n != 0)
{
int a = n % 10;
sum += a * a;
n /= 10;
}
if (dic.find(sum) != dic.end())
{
return false;
}
dic.insert(sum);
n = sum;
}
return true;
}
};
1.两数之和
1、题目
2、题解
本题呢,我就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。
那么我们就应该想到使用哈希法了。
因为本题,我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适。
再来看一下使用数组和set来做哈希法的局限。
-
数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
-
set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x 和 y的下标。所以set 也不能用。
此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value再保存数值所在的下标。
-
std::unordered_map 底层实现为哈希表
-
std::map 底层实现是红黑树。
-
std::multimap 底层实现是红黑树。
同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。
这道题目中并不需要key有序,选择std::unordered_map 效率更高!
接下来需要明确两点:
-
map用来做什么
-
map中key和value分别表示什么
map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)
接下来是map中key和value分别表示什么。
这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。
那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。
所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。
在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。
过程如下:
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int,int> map1;
for (int i = 0; i < nums.size(); i++)
{
auto iter=map1.find(target-nums[i]);
if(iter!=map1.end())
{
return {iter->second,i};
}
map1.insert(pair<int,int>(nums[i],i));
// 以下是 map 另外几种插入元素的方式
//map1.insert({nums[i],i})
// map1.insert(map<int, int>::value_type (nums[i],i));
// map1[nums[i]] = i;
// map1.insert(make_pair(nums[i],i));
}
return {};
// 返回用大括弧初始化的该函数对象(返回的类型和函数类型一样)
// 直接构造好vector<int>并将这个对象返回
}
};
3、总结
当题目需要使用 key value 的结构来存放数据时,key来存元素,value来存下标,那么就应该想到 map