代码随想录算法训练营第七天 | 454.四数相加II、383. 赎金信、15. 三数之和、18. 四数之和

454.四数相加II

1、题目

image-20231205230115096

2、题解

首先定义 一个 unordered_map,key 放a和b两数之和,value 放a和b两数之和出现的次数。

遍历 A 和 B 数组,统计两个数组元素之和,和出现的次数,放到 map 中。

定义 int 变量 count,用来统计 a+b+c+d = 0 出现的次数。

在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用 count 把 map 中 key 对应的 value 也就是出现次数统计出来。

最后返回统计值 count 就可以了

 class Solution {
 public:
     int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
         unordered_map<int,int> dic; //key:a+b的数值,value:a+b数值出现的次数
         // 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中
         for (int i = 0; i < nums1.size(); i++)
         {
             for (int j = 0; j < nums2.size(); j++)
             {
                 int num = nums1[i] + nums2[j];
                 dic[num]++;
             }
         }
         
         int ans = 0; // 统计a+b+c+d = 0 出现的次数
         // 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就把map中key对应的value也就是出现次数统计出来。
         for (int i = 0; i < nums3.size(); i++)
         {
             for (int j = 0; j < nums4.size(); j++)
             {
                 int num = 0 - (nums3[i] + nums4[j]);
                 if (dic.find(num) != dic.end())
                 {
                     ans+=dic[num];
                 }
             }
         }
         return ans;
     }
 };   

383.赎金信

1、题目

image-20231205230334917

2、题解

思路一:暴力解法

暴力枚举,两层for循环,不断去寻找相同的字符

class Solution {
 public:
     bool canConstruct(string ransomNote, string magazine) {
         for (int i = 0; i < magazine.length(); i++) {
             for (int j = 0; j < ransomNote.length(); j++) {
                 // 在ransomNote中找到和magazine相同的字符
                 if (magazine[i] == ransomNote[j]) {
                     ransomNote.erase(ransomNote.begin() + j); // ransomNote删除这个字符
                     break;
                 }
             }
         }
         // 如果ransomNote为空,则说明magazine的字符可以组成ransomNote
         if (ransomNote.length() == 0) {
             return true;
         }
         return false;
     }
 };

思路二:哈希解法

因为题目说只有小写字母,那可以采用空间换取时间的哈希策略,用一个长度为26的数组来记录magazine里字母出现的次数。

然后再用ransomNote去验证这个数组是否包含了ransomNote所需要的所有字母。

依然是数组在哈希法中的应用。

 class Solution {
 public:
     bool canConstruct(string ransomNote, string magazine) {
         int record[26] = {0};
         //add
         if (ransomNote.size() > magazine.size()) {
             return false;
         }
         for (int i = 0; i < magazine.length(); i++) {
             // 通过record数据记录 magazine里各个字符出现次数
             record[magazine[i]-'a'] ++;
         }
         for (int j = 0; j < ransomNote.length(); j++) {
             // 遍历ransomNote,在record里对应的字符个数做--操作
             record[ransomNote[j]-'a']--;
             // 如果小于零说明ransomNote里出现的字符,magazine没有
             if(record[ransomNote[j]-'a'] < 0) {
                 return false;
             }
         }
         return true;
     }
 };
3、总结

在本题的情况下,使用map的空间消耗要比数组大一些的,因为map要维护红黑树或者哈希表,而且还要做哈希函数,是费时的!数据量大的话就能体现出来差别了。 所以数组更加简单直接有效!

15.三数之和

1、题目

image-20231205230937078

2、题解

思路一:哈希解法

两层for循环就可以确定 a 和 b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。

把符合条件的三元组放进vector中,然后再去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。

去重的过程不好处理,有很多小细节,如果在面试中很难想到位。

时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。

大家可以尝试使用哈希法写一写,就知道其困难的程度了。

class Solution {
 public:
     vector<vector<int>> threeSum(vector<int>& nums) {
         vector<vector<int>> result;
         sort(nums.begin(), nums.end());
         // 找出a + b + c = 0
         // a = nums[i], b = nums[j], c = -(a + b)
         for (int i = 0; i < nums.size(); i++) {
             // 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
             if (nums[i] > 0) {
                 break;
             }
             if (i > 0 && nums[i] == nums[i - 1]) { //三元组元素a去重
                 continue;
             }
             unordered_set<int> set;
             for (int j = i + 1; j < nums.size(); j++) {
                 
                 if (j > i + 2 && nums[j] == nums[j-1] && nums[j-1] == nums[j-2]) { 
                     continue;
                 }
                 int c = 0 - (nums[i] + nums[j]);
                 if (set.find(c) != set.end()) {
                     result.push_back({nums[i], nums[j], c});
                     set.erase(c);// 三元组元素c去重
                 } else {
                     set.insert(nums[j]);
                 }
             }
         }
         return result;
     }
 };

思路二:双指针法

其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。

而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。

接下来我来介绍另一个解法:双指针法,这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。

动画效果如下:

15.三数之和

拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。

依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。

接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。

如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。

 class Solution {
 public:
     vector<vector<int>> threeSum(vector<int>& nums) {
         vector<vector<int>> result;
         sort(nums.begin(), nums.end());
         // 找出a + b + c = 0
         // a = nums[i], b = nums[left], c = nums[right]
         for (int i = 0; i < nums.size(); i++) {
             // 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
             if (nums[i] > 0) {
                 return result;
             }
             
             // 去重a
             if (i > 0 && nums[i] == nums[i - 1]) {
                 continue;
             }
             int left = i + 1;
             int right = nums.size() - 1;
             while (right > left) {
                 if (nums[i] + nums[left] + nums[right] > 0) right--;
                 else if (nums[i] + nums[left] + nums[right] < 0) left++;
                 else {
                     result.push_back(vector<int>{nums[i], nums[left], nums[right]});
                     // result.push_back({nums[i], nums[left], nums[right]});
                     // 去重b,c
                     while (right > left && nums[right] == nums[right - 1]) right--;
                     while (right > left && nums[left] == nums[left + 1]) left++;
 ​
                     // 找到答案时,双指针同时收缩
                     right--;
                     left++;
                 }
             }
         }
         return result;
     }
 };
3、总结

注意去重a的时候不能用if (nums[i] == nums[i + 1]) ,否则会忽略掉-1,-1,2的元组。去重b和c逻辑应该放在找到一个三元组之后,否则会漏掉0,0,0的元组。

18.四数之和

1、题目

image-20231205231603276

2、题解

四数之和,和 三数之和是一个思路,都是使用双指针法, 基本解法就是在三数之和的基础上再套一层for循环。

但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]target-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

三数之和的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n2),四数之和的时间复杂度是O(n3) 。

那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于三数之和双指针法就是将原本暴力O(n3)的解法,降为O(n2)的解法,四数之和的双指针解法就是将原本暴力O(n4)的解法,降为O(n3)的解法。

之前我们讲过哈希表的经典题目:四数相加II ,相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。

四数相加II是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!

class Solution {
 public:
     vector<vector<int>> fourSum(vector<int>& nums, int target) {
         vector<vector<int>> result;
         sort(nums.begin(), nums.end());
         int left, right;
         for (int i = 0; i < nums.size(); i++)
         {
             // 剪枝处理
             if (nums[i] > target && nums[i] >= 0)
                 break; // 这里使用break,统一通过最后的return返回
             // 对nums[k]去重
             if (i > 0 && nums[i] == nums[i - 1])
                 continue;
 ​
             for (int j = i + 1; j < nums.size(); j++)
             {
                 // 2级剪枝处理
                 if ((long)nums[i] + nums[j] > target && (long)nums[i] + nums[j] >= 0)
                     break;
                 // 对nums[j]去重
                 if (j > i + 1 && nums[j] == nums[j - 1])
                     continue;
                 left = j + 1;
                 right = nums.size() - 1;
                 while (left < right)
                 {
                     //需要对nums进行类型转换,否则会溢出
                     long num = (long)nums[i] + nums[j] + nums[left] + nums[right];
                     if (num > target)
                     {
                         right--;
                     }
                     else if (num < target)
                     {
                         left++;
                     }
                     else
                     {
                         result.push_back({nums[i], nums[j], nums[left], nums[right]});
                         // 对nums[left]和nums[right]去重
                         while (left < right && nums[right] == nums[right - 1])
                             right--;
                         while (left < right && nums[left] == nums[left + 1])
                             left++;
 ​
                         // 找到答案时,双指针同时收缩
                         right--;
                         left++;
                     }
                 }
             }
         }
         return result;
    }
 };
 3、总结

需要注意,如果使用long num = nums[i] + nums[j] + nums[left] + nums[right];进行计算,使用的是 int 类型的加法。会使计算结果溢出。

long num = (long)nums[i] + nums[j] + nums[left] + nums[right];这一步需要对右边表达式其中一个数加上long使int提升为long,然后进行 long 类型的加法运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值