P3372 【模板】线段树 1
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数加上x
2.求出某区间每一个数的和
输入输出格式
输入格式:
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式:
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入样例#1: 复制
5 5 1 5 4 2 3 2 2 4 1 2 3 2 2 3 4 1 1 5 1 2 1 4
输出样例#1: 复制
11 8 20
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强^_^,保证在int64/long long数据范围内)
样例说明:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
struct Node {ll l,r,v,f;}t[500000];
int n,m;
void build(int k,int l,int r){
t[k].l=l;t[k].r=r;
if(l==r){
scanf("%lld",&t[k].v);
return ;
}
int mid=(l+r)/2;
build(k*2,l,mid);
build(k*2+1,mid+1,r);
t[k].v=t[k*2].v+t[k*2+1].v;
}
void down(int k){
t[k*2].f+=t[k].f;
t[k*2+1].f+=t[k].f;
t[k*2].v+=(t[k*2].r-t[k*2].l+1)*t[k].f;
t[k*2+1].v+=(t[k*2+1].r-t[k*2+1].l+1)*t[k].f;
t[k].f=0;//清空当前节点标记
}
ll ask(int k,int l,int r){
if(l<=t[k].l&&t[k].r<=r){
return t[k].v;
}
if(t[k].f)down(k);
ll ans=0;
int mid=(t[k].l+t[k].r)/2;
if(l<=mid)ans+=ask(k*2,l,r);
if(mid<r)ans+=ask(k*2+1,l,r);
return ans;
}
void update(int k,int l,int r,ll v){//更新线段树
//如果包含当前区间,那么就修改这个区间的值,并修改f
//(我们并不更新到叶节点,只是更新这个标记,标记的意思是,这个区间内所有的节点还需要加上多少)
if(l<=t[k].l&&t[k].r<=r){
t[k].v+=(t[k].r-t[k].l+1)*v;
t[k].f+=v;
return ;
}
if(t[k].f)down(k);//如果之前,这个区间被修改过,但是它的下一级没有被修改,那么修改下一级
int mid=(t[k].l+t[k].r)/2;
if(l<=mid)update(k*2,l,r,v);
if(mid<r)update(k*2+1,l,r,v);
t[k].v=t[k*2].v+t[k*2+1].v;
}
int main(){
scanf("%d%d",&n,&m);
build(1,1,n);//建立线段树
for(int i=1;i<=m;i++){
int t,a,b,c;
ll v;
scanf("%d",&t);
if(t==1){
scanf("%d%d%lld",&a,&b,&v);
update(1,a,b,v);//更新线段树
}else{
scanf("%d%d",&a,&b);
printf("%lld\n",ask(1,a,b));
}
}
return 0;
}