高阶函数
在学习高阶函数之前,我们需要知道:变量可以指向函数,函数本身也可以赋值给变量。如:
通常,我们所指的高阶函数是:把函数作为参数传给另一个函数
下面介绍几个python内建的高阶函数:
map函数
map函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。
例如:传入一个序列,输出它每一项的平方
In [1]: li = [1,2,3]
In [2]: print map(str,li)
['1', '2', '3']
reduce函数
reduce把一个函数作用在一个序列[x1, x2, x3…]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
例:求一个序列的和
In [3]: def add(x , y):
...: return x+y
...:
In [4]: print reduce(add,range(1,6))
15
filter函数
filter函数可以用来实现过滤
filter() 也接收一个函数和一个序列。把传入的函数依次作用于每个元素,然后根据返回值是 True,还是 False 决定保留还是丢弃该元素。
例:用filter过滤1-100的质数
def zhishu(n):
if n > 1:
for i in range(2, n / 2 + 1):
if n % i == 0:
return False
return True
print filter(zhishu, range(1, 101))
运行结果:
sorted函数
sorted()可以实现对list的排序,它还可以接收一个比较函数来实现自定义的排序。
排序的核心是比较两个元素的大小。通常规定如下:
x < y, return -1
x == y, return 0
x > y, return 1
例如:有一个元组,存了一序列数字,可以用它实现从小到大的排序
In [1]: t = (1,17,5,44,16,38)
In [2]: sorted(t)
Out[2]: [1, 5, 16, 17, 38, 44]
如果要实现从大到小的排序,我们需要重新定义它的规定:
In [3]: def reversed_cmp(x,y):
...: if x>y:
...: return -1
...: elif x<y:
...: return 1
...: else:
...: return 0
...:
In [4]: sorted(t,reversed_cmp)
Out[4]: [44, 38, 17, 16, 5, 1]
它对字符串也可以排序,排序时是根据首字母的ASCII进行排列的。
如果想要忽略大小写,可以定义函数如下:
ll = ['aa', 'hello', 'Happy', 'ABC']
print sorted(ll)
# 忽略大小写
def ig(x, y):
l1 = x.lower()
l2 = y.lower()
if l1 < l2:
return -1
elif l1 > l2:
return 1
else:
return 0
print sorted(ll,ig)
函数作为返回值(闭包)
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
例如:
def count():
fs = []
for i in range(1,4):
def f(j):
def g():
return j*j
return g
fs.append(f(i))
return fs
f1,f2,f3 = count()
print f1
print f1()
print f2()
print f3()
返回的结果是函数,输出时如果不写成f1(),而是f,返回的则是地址
匿名函数
匿名函数的优势:
1). 匿名函数不需要函数名,可以避免函数名的冲突;
2). 匿名函数可以跳过给函数分配栈空间;
python 使用 lambda 来创建匿名函数。
——lambda只是一个表达式,而不是一个代码块。
例如,我们来看一看平常和用匿名函数写返回1-10的平方是怎样实现的
def pow1(x):
return x*x
print map(pow1,range(1,11))
#匿名函数
print map(lambda x:x*x, range(1,11))
关键字 lambda 表示匿名函数,冒号前面的 x 表示函数参数,后面表示返回的值,匿名函数不用return。
• 匿名函数可以赋值给一个变量
In [1]: f = lambda :1
In [2]: print f()
1
• 匿名函数传递必选参数和默认参数
In [3]: f = lambda x,y=2:x**y
In [4]: print f(2,3)
8
In [5]: print f(2)
4
• 匿名函数传递可变参数
In [6]: f = lambda *x:map(lambda x:x+x,x)
In [7]: print f(1,2,3,4)
[2, 4, 6, 8]
• 匿名函数传递关键字参数
In [8]: f = lambda **kwargs:kwargs.items()
In [9]: print f(name="fentiao",age=5)
[('age', 5), ('name', 'fentiao')]
• 练习:利用匿名函数和字典重新编辑计算器
#!/usr/bin/env python
# coding:utf-8
from __future__ import division # 除法
_author_ = "xj"
num1 = input("num1:")
operate = raw_input("operate:")
num2 = input("num2:")
dic = {"+": lambda num1, num2: num1 + num2,
"-": lambda num1, num2: num1 - num2,
"*": lambda num1, num2: num1 * num2,
"/": lambda num1, num2: num1 / num2}
if operate in dic.keys():
print dic[operate](num1, num2)
else:
print "wrong! use(+ - * /)"
装饰器
装饰器:用来装饰函数的一个函数
它的目标是添加功能,装饰函数,而且做到:
1). 不修改函数的源代码;
2). 函数的调用方式没有改变
我们来看这样一个装饰器,它的作用是记录一个函数的执行时间(func()是要执行的函数)
import time
def timmer(func):
def dec():
start_time = time.time()
func()
stop_time = time.time()
return stop_time-start_time
return dec
它在具体使用时如下所示进行使用:
@timmer
def hello2():
print "hello2......"
time.sleep(2)
# hello2=timmer(hello2)
print hello2()
#其中@timmer的实质就是hello2=timmer(hello2),我们把它叫做“语法糖“
运行结果