分析方法
文章平均质量分 90
用数据说话
这个作者很懒,什么都没留下…
展开
-
因果推断概述
一个事情的发生导致了另一件事都发生两件事(A与B)相互关联A的发生可以预测B的发生排除其他可能的混淆变量。原创 2023-09-06 16:44:06 · 560 阅读 · 0 评论 -
统计数字会撒谎
在真实的数据分析工作中,真实的数据形态往往更复杂,更多样,而标准的辛普森悖论也有很多的扩展甚至是变种的形态。总结:GPA没有反映不同学生所选课程的难易程度,假设一个GPA为3.5的学生选的都是容易的课,而GPA2.9的学生的课程表里尽是微积分、物理这类难学的课,我们能一口判定孰优孰劣吗?总结:要明确分析的目的,分清分析的单位,描述的对象到底是谁(或什么),以及不同的人口中的谁(或什么)是不是存在差异。詹姆斯的两分球命中率也低于库里,三分球命中率也低于库里,但是汇总起来看,詹姆斯的投篮命中率是要高于库里的!原创 2023-09-06 16:28:30 · 275 阅读 · 0 评论 -
搭建数据指标体系2|四个模型
讲到这里你可能会有几个问题。问题1:指标分级治理拆这么细有什么用?正向作用:分解核心KPI,明确每一个步骤的行动计算和每个行动考核指标。例如,老板让你估算明年GMV,就可以根据历史数据运用这套指标体系对明年的GMV进行估算。再例如,老板让你下个月做到1个亿的GMV,让你出个方案。这是就可以再对曝光UV进行细分,把量拆解到每一个渠道上去。反向作用:当业务出现问题,可以通过指标体系反向排查业务问题。例如,这个月的GMV下降了10%,老板让你排查下问题在哪里。转载 2023-05-06 11:12:04 · 390 阅读 · 0 评论 -
搭建数据指标体系1|概览
应能够最为精准地抓住企业为客户创造的核心价值。指标的前后关联关系快速找到关键指标波动的原因。WHEN 下订单时间(时间戳表示)WHERE GPS IP 国家 城市。WHO 用户ID 设备ID。HOW 前向页面 浏览时长。内容:大盘分析(各模块核心指标)指标体系建立后应该能覆盖大部。决策信息 宽度与效率的平衡。4W1H 埋点+建表。WHAT 页面标题。原创 2023-05-06 10:16:15 · 636 阅读 · 0 评论 -
数据敏感度
所谓的数据敏感度,其实就是在大脑内建立了数字和业务之间的联系,而优秀的数据敏感度,就是能够一眼看出数据的问题和背后可能的原因。什么叫一眼看出?(优秀的数据敏感度)❖ 如果你是游戏行业的,我告诉你这款MMORPG的次留是20%,你能知道我款产品在行业里处于什么样的水准,游戏前期可能存在什么样的问题等;❖ 如果你是O2O行业的,我告诉你外卖订单量相比于昨天下跌了10%,你能很快判断出问题的影响面和造成订单量下跌的可能原因;原创 2023-05-03 14:03:36 · 1395 阅读 · 0 评论 -
数据分析工作有哪些「新手常见错误」?
https://mp.weixin.qq.com/s/-bwxzyqRn1uhDvFlr3QXlg一、主管臆断,而不是用数据去证明错误点1)结论里不要是“我觉得”,“我认为”这种主管臆断的词,而是要以客观的方式,所有的结论都要用数据去证明你的观点。2)提出假设,用数据证明,得出分析结论的方法,就是假设分析方法 ,要学会。1)先提出“双十一”活动的假设2)用数据进行证明二、缺少沟...转载 2021-07-11 17:13:51 · 134 阅读 · 0 评论