spark动态分配executor

转自:http://blog.csdn.net/u014393917/article/details/50630829


动态分配executor的实例初始化部分


如果spark.executor.instances配置项设置为0或者没有设置,这个默认情况下是一个未设置的值,yarn的运行模式时,这个配置通过--num-executors来得到.

同时spark.dynamicAllocation.enabled 配置项设置为true时.默认值为false,表示启用了动态分配executor.

在driver端SparkContext生成时,会检查上面两个配置项,如果这两个配置满足动态executor分配的要求时,会生成一个ExecutorAllocationManager实例.

 

_executorAllocationManager =
  if (dynamicAllocationEnabled) {
    Some(new ExecutorAllocationManager(this, listenerBus, _conf))
  } else {
    None
  }
_executorAllocationManager.foreach(_.start())

 

 

必要的配置项:

1,配置项spark.dynamicAllocation.minExecutors,默认值0,最少分配的executor的个数.

2,配置项spark.dynamicAllocation.maxExecutors,默认值int.maxvalue.最大可分配的executor的个数.

3,配置项spark.dynamicAllocation.initialExecutors,默认值为配置项1的值,初始化时启用的executor的个数,

4,1,配置项spark.dynamicAllocation.schedulerBacklogTimeout,默认值1s,如果未分配的task等待分配的时间超过了这个配置的时间,表示需要新启动executor.

4,2,配置项spark.dynamicAllocation.sustainedSchedulerBacklogTimeout,默认是4,1,配置项的值,这个配置用于设置在初始调度的executor调度延时后,每次的等待超时时间.

5,配置项spark.dynamicAllocation.executorIdleTimeout,默认值60s,executor的空闲回收时间.

6,配置项spark.executor.cores的配置(executor-cores)必须大于或等于配置项spark.task.cpus的值(这个配置默认是1,这是每个task需要的cpu的个数).

7,配置项spark.shuffle.service.enabled必须配置为true,默认为false.如果这个配置设置为true时,BlockManager实例生成时,需要读取spark.shuffle.service.port配置项配置的shuffle的端口,同时对应BlockManager的shuffleClient不在是默认的BlockTransferService实例,而是ExternalShuffleClient实例.

8,初始化时,ExecutorAllocationManager中的属性initializing默认值为true,表示定时调度时,什么都不做.

 

在执行ExecutorAllocationManager中的start函数时:

def start(): Unit = {

这里把ExecutorAllocationListener实例(内部实现类)添加到sparkContext中的listenerBus中,用于监听stage,task的启动与完成,并做对应的操作.
  listenerBus.addListener(listener)

  val scheduleTask = new Runnable() {
    override def run(): Unit = {
      try {
        schedule()
      } catch {
        case ct: ControlThrowable =>
          throw ct
        case t: Throwable =>
          logWarning(s"Uncaught exception in thread

               ${Thread.currentThread().getName}", t)
      }
    }
  }

定时100ms执行一次schedule的调度函数,来进行task的分析.
  executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis,

      TimeUnit.MILLISECONDS)
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值