转自:http://blog.csdn.net/u014393917/article/details/50630829
动态分配executor的实例初始化部分
如果spark.executor.instances配置项设置为0或者没有设置,这个默认情况下是一个未设置的值,yarn的运行模式时,这个配置通过--num-executors来得到.
同时spark.dynamicAllocation.enabled 配置项设置为true时.默认值为false,表示启用了动态分配executor.
在driver端SparkContext生成时,会检查上面两个配置项,如果这两个配置满足动态executor分配的要求时,会生成一个ExecutorAllocationManager实例.
_executorAllocationManager =
if (dynamicAllocationEnabled) {
Some(new ExecutorAllocationManager(this, listenerBus, _conf))
} else {
None
}
_executorAllocationManager.foreach(_.start())
必要的配置项:
1,配置项spark.dynamicAllocation.minExecutors,默认值0,最少分配的executor的个数.
2,配置项spark.dynamicAllocation.maxExecutors,默认值int.maxvalue.最大可分配的executor的个数.
3,配置项spark.dynamicAllocation.initialExecutors,默认值为配置项1的值,初始化时启用的executor的个数,
4,1,配置项spark.dynamicAllocation.schedulerBacklogTimeout,默认值1s,如果未分配的task等待分配的时间超过了这个配置的时间,表示需要新启动executor.
4,2,配置项spark.dynamicAllocation.sustainedSchedulerBacklogTimeout,默认是4,1,配置项的值,这个配置用于设置在初始调度的executor调度延时后,每次的等待超时时间.
5,配置项spark.dynamicAllocation.executorIdleTimeout,默认值60s,executor的空闲回收时间.
6,配置项spark.executor.cores的配置(executor-cores)必须大于或等于配置项spark.task.cpus的值(这个配置默认是1,这是每个task需要的cpu的个数).
7,配置项spark.shuffle.service.enabled必须配置为true,默认为false.如果这个配置设置为true时,BlockManager实例生成时,需要读取spark.shuffle.service.port配置项配置的shuffle的端口,同时对应BlockManager的shuffleClient不在是默认的BlockTransferService实例,而是ExternalShuffleClient实例.
8,初始化时,ExecutorAllocationManager中的属性initializing默认值为true,表示定时调度时,什么都不做.
在执行ExecutorAllocationManager中的start函数时:
def start(): Unit = {
这里把ExecutorAllocationListener实例(内部实现类)添加到sparkContext中的listenerBus中,用于监听stage,task的启动与完成,并做对应的操作.
listenerBus.addListener(listener)
val scheduleTask = new Runnable() {
override def run(): Unit = {
try {
schedule()
} catch {
case ct: ControlThrowable =>
throw ct
case t: Throwable =>
logWarning(s"Uncaught exception in thread
${Thread.currentThread().getName}", t)
}
}
}
定时100ms执行一次schedule的调度函数,来进行task的分析.
executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis,
TimeUnit.MILLISECONDS)
}