机器学习数学语言(7.27作业)

1.二元关系

1.令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.
P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1, 5, 9\}, \{2, 8\}\} P={{1,5,9},{2,8}}
2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2, 并计算 R 1 ∘ R 2 \mathbf{R}_1\circ\mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1.
给定两个关系:
R 1 = { ( 1 , 2 ) , ( 2 , 8 ) } , R 2 = { ( 5 , 8 ) , ( 8 , 9 ) } \mathbf{R}_1=\{(1,2), (2,8)\}, \mathbf{R}_2=\{(5,8), (8,9)\} R1={(1,2),(2,8)},R2={(5,8),(8,9)}
R 1 ∘ R 2 = { ( 2 , 9 ) } \mathbf{R}_1\circ\mathbf{R}_2=\{(2, 9)\} R1R2={(2,9)}
正闭包: R + = ⋃ i = 1 ∣ A ∣ R i \mathbf{R}^+ = \bigcup_{i = 1}^{\vert \mathbf{A} \vert} \mathbf{R}^i R+=i=1ARi
R 1 + = { ( 1 , 2 ) , ( 2 , 8 ) , ( 1 , 8 ) } \mathbf{R}_1^+=\{(1,2),(2,8),(1,8)\} R1+={(1,2),(2,8),(1,8)}
克林闭包: R ∗ = R + ∪ R 0 \mathbf{R}^* = \mathbf{R}^+ \cup \mathbf{R}^0 R=R+R0 , 其中 R 0 = { ( x , x ) ∣ x ∈ A } \mathbf{R}^0 = \{(x, x) \vert x \in A\} R0={(x,x)xA}
R 1 ∗ = { ( 1 , 2 ) , ( 2 , 8 ) , ( 1 , 8 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^*=\{(1,2),(2,8),(1,8),(1,1),(2,2),(5,5),(8,8),(9,9)\} R1={(1,2),(2,8),(1,8),(1,1),(2,2),(5,5),(8,8),(9,9)}
3.查阅粗糙集上下近似的定义并大致描述.
上近似和下近似:上近似是指包含 给定集合 X 元素的 最小可定义集。下近似则是包含于X的最大可定义集。

2.函数

举例说明你对函数的认识.
1.一元函数
f : R → R f: \mathbb{R} \to \mathbb{R} f:RR
f ( x ) = x 2 + 1 f(x)=x^2+1 f(x)=x2+1
x ↦ x 2 + 1 x \mapsto x^2 + 1 xx2+1
2.多元函数
f : R 2 → R f: \mathbb{R}^2 \to \mathbb{R} f:R2R
f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2
机器学习的回归, 就是学习函数
f : R m → R f: \mathbb{R}^m \to \mathbb{R} f:RmR, 其中 m m m 为条件属性数.
在多标签学习中, 就是学习
f : R m → { − 1 , + 1 } L f: \mathbb{R}^m \to \{-1,+1\}^L f:Rm{1,+1}L
在多标签分布学习中, 就是学习
f : R m → [ 0 , 1 ] L f: \mathbb{R}^m \to [0, 1]^L f:Rm[0,1]L, 其中 m m m 为条件属性数, L L L 为标签数.

3.向量/矩阵的范数

自己给定一个矩阵并计算其各种范数.
对于矩阵: [ 2.2 − 1.8 0 5.6 ] \begin{bmatrix}2.2 & -1.8 \\ 0 & 5.6 \end{bmatrix} [2.201.85.6]

  1. l 0 l_0 l0范数: ∥ X ∥ 0 = 3 \|\mathbf{X}\|_0=3 X0=3. 语义: 非零项个数.
  2. l 1 l_1 l1范数: ∥ X ∥ 1 = 2.2 + 1.8 + 0 + 5.6 = 9.6 \|\mathbf{X}\|_1=2.2+1.8+0+5.6=9.6 X1=2.2+1.8+0+5.6=9.6. 语义: 绝对值之和,常用于计算绝对误差.
  3. l 2 l_2 l2范数: ∥ X ∥ 2 = 2. 2 2 + ( − 1.8 ) 2 + 0 + 5. 6 2 = 6.654 \|\mathbf{X}\|_2=\sqrt{2.2^2+(-1.8)^2+0+5.6^2}=6.654 X2=2.22+(1.8)2+0+5.62 =6.654. 语义: 平方和,常用于计算平方误差.
  4. ∥ X ∥ ∞ \|\mathbf{X}\|_{\infty} X范数: ∥ X ∥ ∞ = max ⁡ i , j ∣ x i j ∣ = 5.6 \|\mathbf{X}\|_{\infty} = \max_{i, j} \vert x_{ij} \vert=5.6 X=maxi,jxij=5.6. 语义: 平方和.

4.min与argmin

解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标
min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min \sum_{(i, j) \in \Omega} (f(\mathbf{x}_i, \mathbf{t}_j) - r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2

各符号及含义.

x i \mathbf{x}_i xi表示用户 i i i的信息, t j \mathbf{t}_j tj表示商品 j j j的信息, r i j r_{ij} rij表示用户 i i i对商品 j j j的浏览情况, r i j = 0 r_{ij}=0 rij=0表示浏览过, r i j = 1 r_{ij}=1 rij=1表示未浏览过, n n n个用户对 m m m个商品的浏览情况组成评分表 R = ( r i j ) n × m \mathbf{R}=(r_{ij})_{n\times m} R=(rij)n×m Ω \Omega Ω代表评分表 R \mathbf{R} R中非零元素对应的位置集合,函数 f : R d u × R d t → R f: R^{d_u} \times R^{ d_t} \rightarrow R f:Rdu×RdtR为要学习的目标。

优化目标为最小化训练集上的 MSE,使得 f ( x i , t j ) f(\mathbf{x}_i, \mathbf{t}_j) f(xi,tj) r i j r_{ij} rij平均差距尽可能小,学习到能够根据用户和商品信息来预测浏览情况的函数,为用户推荐喜欢的商品。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值