这道题是一个典型的完全背包题。
Part 1:预处理
首先我们先看一下m的取值范围:m≤100,000,然后你就可以非常愉快的发现这个数据范围太友好了,我们可以直接打一个不超过100000的四次方的表,然后我们对这个表进行处理就行了。
Part 2:为什么是完全背包?
先看题目:将一个整数 m分解为 n个四次方数的和的形式,要求 n最小。
由题意可知,我可以选一个或多个相同的四次方数。所以,根据各种背包的性质,我们可以判定:这是一个完全背包。(不会背包的小伙伴们看这里:背包九讲(JL给我的纸质稿我就不放了))那么,问题就解决了,接下来我们就只用把完全背包的板子改一下下就AC啦!
注意:背包的初始值为正无穷,一定要将f[0]赋值为0!(被问我是怎么知道的,因为这个问题,我调了半个多小时)
Part 3:你们最喜欢的代码来了
#include "algorithm"
#include "iostream"
#include "string.h"
#define ll long long
using namespace std;
int m;
int f[100005], num[17]={1,16,81,256,625,1296,2401,4096,6561,10000,14641,20736,28561,38416,50625,65536,83521};
int main(){
scanf("%d",&m);
memset(f,0xf,sizeof f);
f[0]=0;//一定要记得f[0]=0 !!!
for(int i=0;i<17;i++){
for(int j=num[i];j<=m;j++){
f[j]=min(f[j],f[j-num[i]]+1);
}
}
printf("%d\n",f[m]);
return 0;
}