数据结构与算法之美-复杂度分析(笔记1)

复杂度

大O复杂度表示法

  int sum = 0;   
  int i = 1;   
  for (; i <= n; ++i) {  
     sum = sum + i;  
      }  
  return sum;
  }

假设每一行代码执行的时间都为unit_time,这段代码总共执行了多少时间呢?第一二行分别需要1个unit_time,四五行都运行了n遍需要2n*unit_time的执行时间,所以这段代码总的执行时间就是(2n+2)*unit_time,我们可以知道所有代码的执行时间T(n)与每行代码的执行次数n成正比

T(n)=O(f(n))

这个例子中T(n)=O(2n+2),大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大O表示法表示刚讲的那段代码的时间复杂度,就可以记为:T(n) = O(n)。

时间复杂度分析

  1. 只关注循环执行次数最多的一段代码
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

几种常见时间复杂度实例分析

在这里插入图片描述

  1. 0(1) for(int i=0;i<10;i++)也是,因为10次明确数出来了,只要代码的执行时间不随n的增大而增长,这样代码的时间复杂度我们都记作O(1)
  2. O(logn)、O(nlogn)对数阶时间复杂度
 i=1; 
 while (i <= n)  {  
  i = i * 2; 
  }

第三行执行次数最多,i从1开始取,每次*2,>n时结束

当pow(2,x)>n时结束,x为次数,x=log2n,以乘法法则,如果一段代码的时间复杂度是O(logn),我们循环执行n遍,时间复杂度就是O(nlogn)了,比如,归并排序、快速排序的时间复杂度都是O(nlogn)

  1. O(m+n)、O(m*n)
for(;i<n;i++)
for(;j<m;j++)

当无法估算m和n谁大时,无法忽略,不能使用加法法则

eg:

int func ( int n )
{   int i = 0, sum = 0;
    while ( sum < n )  sum += ++i;
    return i;
}

这段代码的时间复杂度是 O(sqrt(n)),其中 n 是函数输入的参数。
假设 while 循环迭代了 k 次后结束,那么有:
sum = 1 + 2 + … + k >= n
求和公式:
sum = (1 + k) * k / 2
k * (k + 1) / 2 >= n
k^2 + k - 2n >= 0
使用求解公式得到:
k >= (-1 + sqrt(1 + 8n)) / 2

浅析最好,最坏,平均,均摊时间复杂度

最好最坏时间复杂度
// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) pos = i;
  }
  return pos;
}

这段代码要实现的功能是,在一个无序的数组(array)中,查找变量 x 出
现的位置。如果没有找到,就返回 -1。按照上节课讲的分析方法,这段代码的复杂度是 O(n),
其中,n 代表数组的长度。

并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可
以提前结束循环了。但是,这段代码写得不够高效。我们可以这样优化一下这段查找代码。

// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
      pos = i;
      break;
    }
  }
  return pos;
}

因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变
量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存
在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况
下,这段代码的时间复杂度是不一样的。

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像我们刚刚讲到的,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应
的时间复杂度就是最好情况时间复杂度。

最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。就像刚举的那个例子,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

平均时间复杂度

要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我
们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历
的元素个数的平均值,即:

平均时间复杂度就是 O(n)。

我们知道,要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起
来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的
数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找
的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

均摊时间复杂度
// array 表示一个长度为 n 的数组
// 代码中的 array.length 就等于 n
int[] array = new int[n];
int count = 0;
void insert(int val) {
  if (count == array.length) {
    int sum = 0;
    for (int i = 0; i < array.length; ++i) {
      sum = sum + array[i];
    }
    array[0] = sum;
    count = 1;
  }
  array[count] = val;
  ++count;
}

这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

分析一下这段代码的时间复杂度:

最理想的情况下,数组中有空闲空间,我们只需要将数据插入到数组下标为 count 的位置就可了,所以最好情况时间复杂度为 O(1)。

最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

那平均时间复杂度是多少呢?答案是 O(1)。我们还是可以通过前面讲的概率论的方法来分析。假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:

空间复杂度

空间复杂度全称就是渐进空间复杂度表示算法的存储空间与数据规模之间的增长关系

void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i < n; ++i) {
    a[i] = i * i;
  }
  for (i = n - 1; i >= 0; --i) {
    print out a[i]
  }
}

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是
它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的
int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是
O(n)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值