Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 158643 Accepted Submission(s): 37111
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6#include<iostream> #include<cstdio> #include<cstring> #define INF 0xfffffff using namespace std; int a[100005]; int dp[100005]; int main() { int t; int n; int max; int s,ss,e; scanf("%d",&t); for(int k=1; k<=t; k++) { memset(dp,0,sizeof(dp)); scanf("%d",&n); for(int i=1; i<=n; i++) scanf("%d",&a[i]); max=-INF; s=e=ss=1; for(int i=1; i<=n; i++) { dp[i]=dp[i-1]+a[i]; if(dp[i]<a[i]) { dp[i]=a[i]; ss=i; } if(dp[i]>max) { max=dp[i]; s=ss; e=i; } } printf("Case %d:\n%d %d %d\n",k,max,s,e); if(k<t) printf("\n"); } return 0; }