Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6 很浅显的一道题 求一段序列中的 最大连续子序列的和 并输出 这段序列的起点和终点 因为是DP所有放了很久。。#include<iostream> #include<cstdio> #include<cstring> using namespace std; int q[100001]; int main() { int m,n,i,j,s; int sum,max,a,b; int t; int start,end; scanf("%d",&t); for(int k=1;k<=t;k++) { if(k!=1) cout<<endl; scanf("%d",&m); for(i=0;i<m;i++) scanf("%d",&q[i]); sum=q[0]; max=q[0]; a=0,b=0; start=0;end=0; //初始化 for(i=1;i<m;i++) { if(sum<0) //类似于贪心思想,,当总和小于0时,要的是连续序列 则前面一段不要 { a=i; b=i; sum=q[i]; } else { sum=sum+q[i]; b=i; } if(sum>max) //每次都要更新最大和值 { max=sum; start=a; end=b; } } cout<<"Case "<<k<<':'<<endl; cout<<max<<' '<<start+1<<' '<<end+1<<endl; } return 0; }