lca的tarjan算法(离线)

本文介绍了LCA问题中Tarjan算法的实现方法及其应用,该算法的时间复杂度为O(m+n)。通过实例讲解了如何求解树上的最短路径,并提供了完整的代码示例。

学习了lca的tarjan算法。时间复杂度为O(m+n)

参考博客:

http://www.cnblogs.com/JVxie/p/4854719.html

http://blog.csdn.net/ljd4305/article/details/11606865

http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html


树上最短路公式:

记dis[u]为根节点到u节点的距离。

dist(u,v) = dis[u] + dis[v] - 2 * dis[lca(v, v)]


例题:hdu2586 How far away ?


代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 40010;
const int maxm = 201;

int n,m;
vector<int>G[maxn];
vector<int>W[maxn];
vector<int>ask[maxn];
vector<int>id[maxn];
ll dfn[maxn];
int vis[maxn];
int U[maxm],V[maxm];
ll A[maxm];


int fa[maxn];
int f(int x)
{
    return x==fa[x]?x:f(fa[x]=f(fa[x]));
}

void tarjan(int u)
{
    vis[u]=1;
    for(int i=0;i<(int)ask[u].size();i++)
    {
        int v = ask[u][i];
        if(vis[v]) A[id[u][i]]=dfn[u]+dfn[v]-2*dfn[f(v)];
    }
    for(int i=0;i<(int)G[u].size();i++)
    {
        int v = G[u][i];
        if(!vis[v])
        {
            dfn[v]=dfn[u]+W[u][i];
            tarjan(v);
            fa[v]=u;
        }
    }
}

void solve()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        G[i].clear();
        W[i].clear();
        ask[i].clear();
        id[i].clear();
        vis[i]=0;
        fa[i]=i;
    }
    for(int i=1;i<n;i++)
    {
        int u,v,w;
        scanf("%d %d %d",&u,&v,&w);
        G[u].push_back(v);
        W[u].push_back(w);
        G[v].push_back(u);
        W[v].push_back(w);
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%d %d",U+i,V+i);
        ask[U[i]].push_back(V[i]);
        id[U[i]].push_back(i);
        ask[V[i]].push_back(U[i]);
        id[V[i]].push_back(i);
    }
    dfn[1]=0;
    tarjan(1);
    for(int i=1;i<=m;i++) printf("%lld\n",A[i]);
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--) solve();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值