学习了lca的tarjan算法。时间复杂度为O(m+n)
参考博客:
http://www.cnblogs.com/JVxie/p/4854719.html
http://blog.csdn.net/ljd4305/article/details/11606865
http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html
树上最短路公式:
记dis[u]为根节点到u节点的距离。
dist(u,v) = dis[u] + dis[v] - 2 * dis[lca(v, v)]
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 40010;
const int maxm = 201;
int n,m;
vector<int>G[maxn];
vector<int>W[maxn];
vector<int>ask[maxn];
vector<int>id[maxn];
ll dfn[maxn];
int vis[maxn];
int U[maxm],V[maxm];
ll A[maxm];
int fa[maxn];
int f(int x)
{
return x==fa[x]?x:f(fa[x]=f(fa[x]));
}
void tarjan(int u)
{
vis[u]=1;
for(int i=0;i<(int)ask[u].size();i++)
{
int v = ask[u][i];
if(vis[v]) A[id[u][i]]=dfn[u]+dfn[v]-2*dfn[f(v)];
}
for(int i=0;i<(int)G[u].size();i++)
{
int v = G[u][i];
if(!vis[v])
{
dfn[v]=dfn[u]+W[u][i];
tarjan(v);
fa[v]=u;
}
}
}
void solve()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
G[i].clear();
W[i].clear();
ask[i].clear();
id[i].clear();
vis[i]=0;
fa[i]=i;
}
for(int i=1;i<n;i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
G[u].push_back(v);
W[u].push_back(w);
G[v].push_back(u);
W[v].push_back(w);
}
for(int i=1;i<=m;i++)
{
scanf("%d %d",U+i,V+i);
ask[U[i]].push_back(V[i]);
id[U[i]].push_back(i);
ask[V[i]].push_back(U[i]);
id[V[i]].push_back(i);
}
dfn[1]=0;
tarjan(1);
for(int i=1;i<=m;i++) printf("%lld\n",A[i]);
}
int main()
{
int T;
scanf("%d",&T);
while(T--) solve();
return 0;
}