LCA的tarjan算法的理解

转自  http://scturtle.is-programmer.com/posts/30055.html

tarjan算法的步骤是(当dfs到节点u时):
1 在并查集中建立仅有u的集合,设置该集合的祖先为u
1 对u的每个孩子v:
   1.1 tarjan之
   1.2 合并v到父节点u的集合,确保集合的祖先是u
2 设置u为已遍历
3 处理关于u的查询,若查询(u,v)中的v已遍历过,则LCA(u,v)=v所在的集合的祖先
 
举例说明(非证明):


假设遍历完10的孩子,要处理关于10的请求了
取根节点到当前正在遍历的节点的路径为关键路径,即1-3-8-10
集合的祖先便是关键路径上距离集合最近的点
比如此时:
    1,2,5,6为一个集合,祖先为1,集合中点和10的LCA为1
    3,7为一个集合,祖先为3,集合中点和10的LCA为3
    8,9,11为一个集合,祖先为8,集合中点和10的LCA为8
    10,12为一个集合,祖先为10,集合中点和10的LCA为10
你看,集合的祖先便是LCA吧,所以第3步是正确的
道理很简单,LCA(u,v)便是根至u的路径上到节点v最近的点

为什么要用祖先而且每次合并集合后都要确保集合的祖先正确呢?
因为集合是用并查集实现的,为了提高速度,当然要平衡加路径压缩了,所以合并后谁是根就不确定了,所以要始终保持集合的根的祖先是正确的
关于查询和遍历孩子的顺序:
wikipedia上就是上文中的顺序,很多人的代码也是这个顺序
但是网上的很多讲解却是查询在前,遍历孩子在后,对比上文,会不会漏掉u和u的子孙之间的查询呢?
不会的
如果在刚dfs到u的时候就设置u为visited的话,本该回溯到u时解决的那些查询,在遍历孩子时就会解决掉了
这个顺序问题就是导致我头大看了很久这个算法的原因,也是絮絮叨叨写了本文的原因,希望没有理解错= =

int f[maxn],fs[maxn];//并查集父节点 父节点个数
bool vit[maxn];
int anc[maxn];//祖先
vector<int> son[maxn];//保存树
vector<int> qes[maxn];//保存查询
typedef vector<int>::iterator IT;
 
int Find(int x)
{
    if(f[x]==x) return x;
    else return f[x]=Find(f[x]);
}
void Union(int x,int y)
{
    x=Find(x);y=Find(y);
    if(x==y) return;
    if(fs[x]<=fs[y]) f[x]=y,fs[y]+=fs[x];
    else f[y]=x,fs[x]+=fs[y];
}
 
void lca(int u)
{
    anc[u]=u;
    for(IT v=son[u].begin();v!=son[u].end();++v)
    {
        lca(*v);
        Union(u,*v);
        anc[Find(u)]=u;
    }
    vit[u]=true;
    for(IT v=qes[u].begin();v!=qes[u].end();++v)
    {
        if(vit[*v])
            printf("LCA(%d,%d):%d\n",u,*v,anc[Find(*v)]);
    }
}



LCA(最近公共祖先)是指在一棵树中,找到两个节点的最近的共同祖先节点。而Tarjan算法是一种用于求解强连通分量的算法,通常应用于有向图中。它基于深度优先搜索(DFS)的思想,通过遍历图中的节点来构建强连通分量。Tarjan算法也可以用于求解LCA问题,在有向无环图(DAG)中。 具体来说,在使用Tarjan算法求解LCA时,我们需要进行两次DFS遍历。首先,我们从根节点开始,遍历每个节点,并记录每个节点的深度(即从根节点到该节点的路径长度)。然后,我们再进行一次DFS遍历,但这次我们在遍历的过程中,同时进行LCA的查找。对于每个查询,我们将两个待查询节点放入一个查询列表中,并在遍历过程中记录每个节点的祖先节点。 在遍历的过程中,我们会遇到以下几种情况: 1. 如果当前节点已被访问过,说明已经找到了该节点的祖先节点,我们可以更新该节点及其所有后代节点的祖先节点。 2. 如果当前节点未被访问过,我们将其标记为已访问,并将其加入到查询列表中。 3. 如果当前节点有子节点,我们继续递归遍历子节点。 最终,对于每个查询,我们可以通过查询列表中的两个节点的最近公共祖先节点来求解LCA。 需要注意的是,Tarjan算法的时间复杂度为O(V+E),其中V为节点数,E为边数。因此,对于大规模的树结构,Tarjan算法是一种高效的求解LCA问题的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值