证明arcsinx+arccosx=π/2,并且为什么arcsinx-arccosx=π/2不成立

下面我们先直接用代数式来证明一下: 设 y 1 = arcsin ⁡ x , y 2 = arccos ⁡ x ,求 y 1 + y 2 由于 x = sin ⁡ y 1 = cos ⁡ y 2 ,而 cos ⁡ y 2 = sin ⁡ ( y 2 + π 2 ) 那么就得到 y 1 = y 2 + π 2 ,即 y 1 − y 2 = π 2 但我们说这样不成立,为什么?   为了弄清原因,我们结合反三角函数的定义域、值域和图像来进行分析 如下图所示。 实际上 arcsin ⁡ x 只取 sin ⁡ x 在 [ − π 2 , π 2 ] 的那一段图像做关于 y = x 的对称 而 arccos ⁡ x 只取 cos ⁡ x 在 [ 0 , π ] 的那一段图像做关于 y = x 的对称 因此在上述推导过程中, y 1 的范围是 [ − π 2 , π 2 ] , y 2 的范围是 [ 0 , π ]   sin ⁡ ( y 2 + π 2 ) 的范围是 [ π 2 , 3 π 2 ] 不属于 [ − π 2 , π 2 ] 的范围 因此 sin ⁡ ( y 2 + π 2 ) 不成立   那如何推出正确的结论呢? 由于 cos ⁡ x 是偶函数,因此 cos ⁡ y 2 = cos ⁡ ( − y 2 ) = sin ⁡ ( − y 2 + π 2 ) sin ⁡ ( − y 2 + π 2 ) 的范围是 [ − π 2 , π 2 ] ,因此成立 最终有 x = sin ⁡ y 1 = cos ⁡ y 2 = cos ⁡ ( − y 2 ) = sin ⁡ ( − y 2 + π 2 ) 因此 y 1 = − y 2 + π 2 ,即 y 1 + y 2 = π 2 即 arcsin ⁡ x + arccos ⁡ x ≡ π 2 下面我们先直接用代数式来证明一下: \\ 设y_1=\arcsin x,y_2=\arccos x,求y_1+y_2 \\ 由于x=\sin y_1=\cos y_2,而\cos y_2=\sin(y_2+\frac{\pi}{2}) \\ 那么就得到y_1=y_2+\frac{\pi}{2},即y_1-y_2=\frac{\pi}{2} \\ 但我们说这样不成立,为什么?\\ \,\\ 为了弄清原因,我们结合反三角函数的定义域、值域和图像来进行分析 \\ 如下图所示。\\ 实际上\arcsin x只取\sin x在[-\frac{\pi}{2},\frac{\pi}{2}]的那一段图像做关于y=x的对称 \\ 而\arccos x只取\cos x在[0,\pi]的那一段图像做关于y=x的对称 \\ 因此在上述推导过程中,y_1的范围是[-\frac{\pi}{2},\frac{\pi}{2}],y_2的范围是[0,\pi] \\ \,\\ \sin(y_2+\frac{\pi}{2})的范围是[\frac{\pi}{2},\frac{3\pi}{2}]不属于[-\frac{\pi}{2},\frac{\pi}{2}]的范围 \\ 因此\sin(y_2+\frac{\pi}{2})不成立 \\ \,\\ 那如何推出正确的结论呢?\\ 由于\cos x是偶函数,因此\cos y_2=\cos(-y_2)=\sin(-y_2+\frac{\pi}{2}) \\ \sin(-y_2+\frac{\pi}{2})的范围是[-\frac{\pi}{2},\frac{\pi}{2}],因此成立 \\ 最终有x=\sin y_1=\cos y_2=\cos(-y_2)=\sin(-y_2+\frac{\pi}{2}) \\ 因此y_1=-y_2+\frac{\pi}{2},即y_1+y_2=\frac{\pi}{2} \\ 即\arcsin x+\arccos x\equiv\frac{\pi}{2} 下面我们先直接用代数式来证明一下:y1=arcsinxy2=arccosx,求y1+y2由于x=siny1=cosy2,而cosy2=sin(y2+2π)那么就得到y1=y2+2π,即y1y2=2π但我们说这样不成立,为什么?为了弄清原因,我们结合反三角函数的定义域、值域和图像来进行分析如下图所示。实际上arcsinx只取sinx[2π,2π]的那一段图像做关于y=x的对称arccosx只取cosx[0,π]的那一段图像做关于y=x的对称因此在上述推导过程中,y1的范围是[2π,2π]y2的范围是[0,π]sin(y2+2π)的范围是[2π,23π]不属于[2π,2π]的范围因此sin(y2+2π)不成立那如何推出正确的结论呢?由于cosx是偶函数,因此cosy2=cos(y2)=sin(y2+2π)sin(y2+2π)的范围是[2π,2π],因此成立最终有x=siny1=cosy2=cos(y2)=sin(y2+2π)因此y1=y2+2π,即y1+y2=2πarcsinx+arccosx2π
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波波老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值