Effective stl 第1章 容器 第5条

第5条:区间成员函数优先于与之对应的单元素成员函数。

利用通过插入迭代器的方式来限定目标区间的copy调用,几乎都应该被替换为对区间成员函数的调用。

当处理标准序列容器时,为了取得同样的结果,使用单元素的成员函数比使用区间成员函数需要更多地调用内存分配子,更频繁的复制对象,而且\或者做冗余的操作。


例子:使用单元素的insert总共在三个方面影响了效率,

1、不必要的函数调用  

2、内联无法避免第二种影响,即把v中已有的元素频繁的移动地插入后它们所处的位置

3、可能会引起多次的内存分配


以上对vector、string都一样,deque对内存分配不适合。

list中复制和内存分配问题不在出现,但是对结点多余的next  prev指针重复的、多余的赋值操作。

关联容器的区间插入操作比其对应的单元素操作效率更高。


下面的函数原型中,InputIterator表示任何类型的输入迭代器都是可接受的。

1、区间创建,所有容器都提供以下形式的构造函数

container::container(InputIterator begin, InputIterator end);

2、区间插入,所有标准序列容器都提供如下形式的insert

void container::insert(iterator position, InputIterator begin, InputIterator end);

关联容器利用比较函数来决定插入元素该插入何处,提供了一个省去position参数的函数原型 

void container::insert(InputIterator begin, InputIterator end);

当看到使用push_front或push_back的循环调用,或者front_inserter或back_inserter被作为参数传递给copy函数时,区间形式的insert可能是更好的选择。

3、区间删除  所有标准容器都提供了区间形式的删除(erase)操作,但对于序列容器和关联容器,返回值不同。

序列容器:iterator  container::erase(iterator begin, iterator end)

关联容器:void container::erase(iterator begin, iterator end)

关于insert的效率分析对erase也类似,但内存分配不适应,因为删除不会引起再次的内存分配

4、区间赋值:所有标准容器都提供了区间形式的assign

void container::assign(InputIterator begin, InputIterator end)


优先选择区间成员函数而不是其对应的单元素成员函数有三条充分的理由:

1、区间成员函数写起来更容器

2、更能清楚的表达你的意图

3、有更高的效率


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如序列或自然语言,因为它们具有记忆功能,能够捕捉数据间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值