问题
一个整数数列,元素取值可能是0~65535中的任意一个数,相同数值不会重复出现;0是个例外,可以反复出现。设计一个算法,当从该数列中随意选取5个数值时,判断这5个数值是否连续相邻。需要注意一下4点:
1. 5个数值允许是乱序的,如 8 7 5 0 6.
2. 0可以通配任意数值,如 8 7 5 0 6 中的0可以通配成9或者4.
3. 0可以多次出现。
4. 全0算连续,只有一个非0算连续。
如果没有0的存在,要组成连续的数列,最大值和最小值的差距必须是4,存在0的情况下,只要最大值和最小值的差距小于4就可以了。所以找出数列中非0的最大值和非0的最小值,时间复杂度O(n).如果非0最大-非0最小<5(即非0最大-非0最小< =4)则这5个数值连续相邻。否则,不连续相邻。因此,总体复杂度为O(n).
代码如下:
#include <stdio.h>
bool IsContinuous(int *a,int n)
{
int min = -1,max = -1;
for(int i = 0;i<n;i++)
{
if(a[i]!= 0)
{
if(min>a[i]||-1==min)
min = a[i];
if(max<a[i]||-1==max)
max = a[i];
}
if(max-min>n-1)
return false;
else
return true;
}
int main()
{
int array[] = { 8,7,5,0,6};
int len = sizeof(array)/sizeof(array[0]);
if(IsContinuous(array,len)
printf("该数组连续相邻\n");
else
printf("该数组不连续相邻\n");
return 0;
}
程序结果
该数组连续相邻