Java中&0xFF是什么意思?计算机的原码、补码和反码

公司项目中有向MCU发数据的代码,新来的同事对其中的& 0xFF很不理解,我解释了很多遍他还是蒙圈状态,可能我的表达能力太差,想想还是用一篇博客来详细说明吧,代码如下:
更新:07月10日,有个小伙伴对这种操作各种不习惯,怎么解释他都想不明白,所以增加了代码注释
这里写图片描述
这里写图片描述

为什么要加上“& 0xFF”?

拆分理解下
0xFF是16进制的表达方式,F是15;十进制为:255,二进制为:1111 1111
&运算符:如果2个bit都是1,则得1,否则得0

然后开始百度……

最后一路百度到计算机的原理之:原码、补码和反码,先简单讲下这三个词的意思吧!

我们已经知道计算机中,所有数据最终都是使用二进制数表达。
我们也已经学会如何将一个10进制数如何转换为二进制数。
不过,我们仍然没有学习一个负数如何用二进制表达。

比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:
00000000 00000000 00000000 00000101
5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?

在计算机中,负数以其正值的补码形式表达。

什么叫补码呢?这得从原码,反码说起。

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的 原码。

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)

比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。

称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:

11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。

那么,补码为:

11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011

所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。

再举一例,我们来看整数-1在计算机中如何表示。

假设这也是一个int类型,那么:  

1、先取1的原码:00000000 00000000 00000000 00000001

2、得反码: 11111111 11111111 11111111 11111110

3、得补码: 11111111 11111111 11111111 11111111

可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFFFF。

上面这么多蛋疼的操作仅仅是因为:在计算机中,负数以其正值的补码形式表达。

有的人可能会问:那为什么在计算机中,负数以其正值的补码形式表达?

MMP,问的好,问的我焦虑症都犯了……焦虑症一犯我就想开车……先开个车吧轻松一下:

网络图片

为什么负数以其正值的补码形式表达:说到补码,就不得不引人另一个概念——模数。模数从屋里意义上讲是某种计量器的容量。这里我们经常举的一个例子就是钟表,其模数为12,即每到12就重新从0开始,数学上叫取模或求余(mod),java、C#和C++里用%表示求余操作。例如:
14%12=2
如果此时的正确时间为6点,而你的手表指向的是8点,如何把表调准呢?有两种方法:一把表逆时针拨两个小时;二是把表顺时针拨10个小时,即
8-2=6
(8+10)%12=6
也就是说在此模数系统里面有
8-2=8+10
这是因为2跟10对模数12互为补数。因此有一下结论:在模数系统中,A-B或A+(-B)等价于A+[B补],即
8-2/8+(-2)=8+10
我们把10叫做-2在模12下的补码。这样用补码来表示负数就可以将加减法统一成加法来运算,简化了运算的复杂程度。
采用补码进行运算有两个好处,一个就是刚才所说的统一加减法;二就是可以让符号位作为数值直接参加运算,而最后仍然可以得到正确的结果符号,符号位无需再单独处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

到这里估计大家都能大概了解原码、补码和反码了,我们回到一开始的问题。

data[1] = (byte)(deY & 0xFF);

外部传进来一个参数func,这个参数有可能是负数的,例如传进来一个“-12”,“-12”二进制为:
0000 1100 取反: 1111 0011 补码加1: 1111 0100
byte –> int 就是由8位变 32 位 高24位全部补1: 1111 1111 1111 1111 1111 1111 1111 0100 ;
0xFF的二进制表示就是:1111 1111,高24位补0:0000 0000 0000 0000 0000 0000 1111 1111;

-12的补码与0xFF 进行与(&)操作 最后就是:0000 0000 0000 0000 0000 0000 1111 0100

最终保持“-12”取反码,补码加1的一致性。

byte类型的数字要&0xff再赋值给int类型,其本质原因就是想保持二进制补码的一致性。

当byte要转化为int的时候,高的24位必然会补1,这样,其二进制补码其实已经不一致了,&0xff可以将高的24位置为0,低8位保持原样。这样做的目的就是为了保证二进制数据的一致性。

如果您喜欢这篇文章,您也可以进行打赏, 金额不限.

这里写图片描述

在C语言中,计算一个十进制数的八位二进制表示的原码反码补码需要首先将十进制转换为二进制,然后根据规则操作: 1. **原码**:对于正数,其二进制形式就是原码;对于负数,最高位(最左边的位)设为1,其余部分按正数顺序不变。 2. **反码**:对原码的操作是在最低有效位取反,然后将整个数的符号位也取反。对于正数,反码是除符号位外其他位都取反;对于负数,反码是除符号位外其他位全部置0。 3. **补码**:补码是对反码的一个简单调整,如果反码的最后一位(符号位之外)为1,那么加1。这样,补码就同时用于表示数值作为加减法运算的结果。 以下是简单的步骤示例: ```c #include <stdio.h> #include <inttypes.h> // 对于uint8_t类型的处理 // 将十进制转成二进制,并存储为8位 uint8_t decimal_to_binary(int num) { uint8_t binary[9]; int i = 7; while (num > 0) { binary[i] = num % 2; num /= 2; i--; } if (binary[0] == 0) { // 如果是负数,在最高位添加1 binary[0] = 1; for (i = 1; i < 8; i++) { binary[i] ^= 1; // 取反 } } return binary[0] << 7 | binary[1] << 6 | ... | binary[7]; // 从低位到高位拼接 } int main() { int num = -5; // 示例十进制数 uint8_t binary[9], original, inverse, complement; binary = decimal_to_binary(num); original = binary; // 原码 inverse = ~binary + 1; // 反码 complement = (inverse & 0xFF); // 补码,不需要特殊处理,因为~操作已包含符号位处理 printf("原始值的8位二进制原码: "); for (int j = 7; j >= 0; j--) { printf("%d", binary[j]); } printf("\n反码: "); for (int j = 7; j >= 0; j--) { printf("%d", inverse[j]); } printf("\n补码: "); for (int j = 7; j >= 0; j--) { printf("%d", complement[j]); } return 0; } ``` 运行这个程序会输出给定十进制数-5的原码反码补码。请注意,实际应用中可能需要额外处理溢出情况边界条件。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值