神经网络-LFR model

CLDNN[1]

不同的网络结构有不同的优势
- CNN擅长减少频率偏移
- LSTM擅长对时序信号进行建模
- DNN可以对特征做更高阶的抽象,更容易进行分类
这里写图片描述
CLDNN依次将CNN/LSTM/DNN进行串联组合成一个新的网络,相当于依次进行频域变化/时域关联/特征抽象,相比于单一的LSTM网络,可以获得性能的提升。

delay constraint[2]

对ctc模型来讲,在数据帧和输出label之间存在延时,即label的尖峰可能在实际语音延迟一段时间后出现,类似于下图:
这里写图片描述
为了改善这种延时的问题,可以人为的限定延时的时间范围。具体做法是在ctc训练过程中,以对齐的label作为标准,在前后向变量计算的过程中只选择延时在一定范围内的路径。
人为缩小这种delay会引起识别率的下降,但是经过smbr训练以后,不同delay时间对应识别率保持一致。

LFR[3]

由于CTC模型是序列到序列的训练关系,所以可以采用lower frame rate的方式进行训练,比如每30ms计算一次声学得分(即使用三帧数据中的一帧进行解码)。
除了ctc这种训练方式,传统的lstm模型也进行了LFR(lower frame rate)的测试。使用时需要将cd-state修改为cd-phone,即放大输出单元的粒度,为跳帧提供空间。
相比于CTC-30ms,CLDNN LFR-40ms(即每四帧数据使用一帧)的优势:
- 准确率提升
- shorter output delay
- 没有ctc对训练数据量敏感(训练语料减少带来的性能降低没有ctc明显)

参考文献

[1]. Convolutional, long short-term memory, fully connected deep neural networks
[2]. Acoustic modelling with CD-CTC-sMBR LSTM RNNs
[3]. Lower Frame Rate Neural Network Acoustic Models

展开阅读全文

没有更多推荐了,返回首页