Application of LBWK Algorithm in Forward-looking Super-resolution Imaging of Scanning Radar 论文阅读

1. 研究目标与实际问题意义

1.1 研究目标

论文旨在通过线性化Bregman算法结合kicking机制(LBWK, Linearized Bregman With Kicking),解决扫描雷达前视成像(Forward-looking Imaging)中的低方位分辨率问题。具体目标包括:

  • 建模:将扫描雷达的方位回波建模为天线方向图与目标散射的卷积过程,并转化为稀疏约束下的L1正则化优化问题
  • 算法改进:利用LBWK算法高效求解L1正则化问题,以较低的计算复杂度和更快的收敛速度实现超分辨率成像。
  • 验证:通过仿真实验对比传统方法(如TSVD、RL、TV、MAP),证明LBWK在分辨相邻目标和噪声抑制方面的优势。

1.2 实际问题与产业意义

扫描雷达在精确制导、自主驾驶和测绘等领域需获取前视区域的高分辨率目标信息。然而传统方法(如SAR、DBS)无法实现前视成像,而单脉冲技术受限于多目标区分能力。论文提出的超分辨率算法可在不增加硬件成本的前提下提升分辨率,对低成本雷达系统的工程实现具有重要意义。


2. 创新方法与模型分析

2.1 信号模型构建

论文基于机载扫描雷达的运动几何关系(图1),推导了目标与雷达的距离历史(Range History)简化公式:
r t ≈ r 0 − v t ( 3 ) r_{t} \approx r_{0} - v t \qquad (3) rtr0vt(3)
随后,通过线性调频信号(LFM)建模回波信号,经距离压缩和徙动校正后,得到离散卷积模型:
s = A σ + n ( 6 ) s = A\sigma + n \qquad (6) s=Aσ+n(6)
其中,天线方向图矩阵 A A A 是Toeplitz矩阵(公式7),表示卷积核的离散化。

2.2 L1正则化模型

为解决逆问题的病态性,论文将超分辨率问题转化为稀疏约束下的L1正则化优化问题
x ~ = min ⁡ x 1 2 ∥ A x − s ∥ 2 2 + μ ∥ x ∥ 1 ( 10 ) \widetilde{x} = \min_{x} \frac{1}{2} \|Ax - s\|_{2}^{2} + \mu \|x\|_{1} \qquad (10) x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值