链式反应
题目描述
不想看题面,其实就是给定 p ( x ) p(x) p(x),有 f ′ ( x ) = f ( x ) 2 p ( x ) + 1 f'(x)=f(x)^2p(x)+1 f′(x)=f(x)2p(x)+1,求 f f f这个多项式的幂级数形式前 n n n项。
Solution
式子可以写成 f n = ∑ i , j [ 0 < = i + j < n ] f i f j p n − i − j − 1 f_n=\sum_{i,j}[0<=i+j<n]f_if_jp_{n-i-j-1} fn=∑i,j[0<=i+j<n]fifjpn−i−j−1。
显然能分治
F
F
T
FFT
FFT。
设分治区间为
[
l
,
r
]
[l,r]
[l,r],考虑
[
l
,
m
i
d
]
[l,mid]
[l,mid]对
[
m
i
d
+
1
,
r
]
[mid+1,r]
[mid+1,r]的贡献。
当
l
=
1
l=1
l=1时,贡献为
∑
i
=
0
m
i
d
∑
j
=
0
m
i
d
∑
k
=
0
r
f
i
f
j
p
k
\sum^{mid}_{i=0}\sum^{mid}_{j=0}\sum^{r}_{k=0}f_if_jp_k
i=0∑midj=0∑midk=0∑rfifjpk
当
l
>
1
l>1
l>1时,有
2
l
>
r
2l>r
2l>r,因此贡献为
2
∑
i
=
l
m
i
d
∑
j
=
0
r
−
l
∑
k
=
0
r
−
l
f
i
f
j
p
k
2\sum^{mid}_{i=l}\sum^{r-l}_{j=0}\sum^{r-l}_{k=0}f_if_jp_k
2i=l∑midj=0∑r−lk=0∑r−lfifjpk
时间复杂度两只
l
g
lg
lg。
注意这里的
f
,
p
f,p
f,p始终是一个
E
G
F
EGF
EGF。
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
using namespace std;
template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;
const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int g=3;
const int gi=(mods+1)/3;
const int MAXN=2000005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
int f=1,x=0; char c=getchar();
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
return x*f;
}
int Limit,L;
char st[MAXN];
int F[MAXN],G[MAXN],P[MAXN],H[MAXN],Q[MAXN],rev[MAXN],inv[MAXN],fac[MAXN],n;
inline int upd(int x,int y) { return (x+y>=mods)?x+y-mods:x+y; }
inline int quick_pow(int x,int y)
{
int ret=1;
for (;y;y>>=1)
{
if (y&1) ret=1ll*ret*x%mods;
x=1ll*x*x%mods;
}
return ret;
}
inline void Init(int n)
{
fac[0]=1;
for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;
inv[n]=quick_pow(fac[n],mods-2);
for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;
}
void Number_Theoretic_Transform(int *A,int opt)
{
for (int i=0;i<Limit;i++) if (i<rev[i]) swap(A[i],A[rev[i]]);
for (int i=1;i<Limit;i<<=1)
{
int Wn=quick_pow(opt==1?g:gi,(mods-1)/(i<<1));
for (int j=0;j<Limit;j+=(i<<1))
for (int k=j,w=1;k<j+i;k++,w=1ll*w*Wn%mods)
{
int x=A[k],y=1ll*A[k+i]*w%mods;
A[k]=upd(x,y),A[k+i]=upd(x,mods-y);
}
}
if (opt==-1)
{
int invlim=quick_pow(Limit,mods-2);
for (int i=0;i<Limit;i++) A[i]=1ll*A[i]*invlim%mods;
}
}
void solve(int l,int r)
{
if (l==r)
{
if (l==1) F[l]=(mods+1)>>1;
else F[l]=1ll*F[l]*inv[l]%mods*fac[l-1]%mods;
printf("%d\n",2ll*F[l]*fac[l]%mods);
return;
}
int mid=(l+r)>>1;
solve(l,mid);
if (l==1)
{
Limit=1,L=0;
int len=mid*2+r;
while (Limit<=len) Limit<<=1,L++;
for (int i=0;i<Limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
for (int i=0;i<Limit;i++) H[i]=G[i]=0;
for (int i=0;i<=r;i++) H[i]=P[i];
for (int i=0;i<=mid;i++) G[i]=F[i];
Number_Theoretic_Transform(G,1);
Number_Theoretic_Transform(H,1);
for (int i=0;i<Limit;i++) G[i]=1ll*G[i]*G[i]%mods*H[i]%mods;
Number_Theoretic_Transform(G,-1);
for (int i=mid+1;i<=r;i++) F[i]=upd(F[i],G[i]);
}
else
{
Limit=1,L=0;
int len=(mid-l)+(r-l)*2;
while (Limit<=len) Limit<<=1,L++;
for (int i=0;i<Limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
for (int i=0;i<Limit;i++) H[i]=G[i]=Q[i]=0;
for (int i=0;i<=r-l;i++) H[i]=P[i];
for (int i=0;i<=mid-l;i++) G[i]=F[i+l];
for (int i=0;i<=r-l;i++) Q[i]=F[i];
Number_Theoretic_Transform(G,1);
Number_Theoretic_Transform(Q,1);
Number_Theoretic_Transform(H,1);
for (int i=0;i<Limit;i++) G[i]=1ll*G[i]*Q[i]%mods*H[i]%mods;
Number_Theoretic_Transform(G,-1);
for (int i=mid+1;i<=r;i++) F[i]=upd(F[i],upd(G[i-l],G[i-l]));
}
solve(mid+1,r);
}
int main()
{
n=read();
Init(n);
scanf("%s",st);
for (int i=1;i<=n;i++) P[i]=(st[i-1]-'0')*inv[i-1];
solve(1,n);
return 0;
}