Loj #6089. 小 Y 的背包计数问题

Loj #6089. 小 Y 的背包计数问题

Solution

似乎是比较套路的东西。

我们发现对于 i ≤ n i\leq \sqrt n in 的部分是一个多重背包,而剩下的部分是一个完全背包,因此考虑分开计算之后合并答案。

part one

i ≤ n i\leq \sqrt n in 时,令 f i , j f_{i,j} fi,j表示前 i i i种数总和为 j j j的方案数,有:
f i , j = ∑ k = 0 i f i − 1 , j − k i f_{i,j}=\sum_{k=0}^i f_{i-1,j-ki} fi,j=k=0ifi1,jki
这一部分可以前缀和优化,令 s i , j = ∑ k f i − 1 , j − k i s_{i,j}=\sum_kf_{i-1,j-ki} si,j=kfi1,jki,有 s i , j = s i , j − i + f i − 1 , j s_{i,j}=s_{i,j-i}+f_{i-1,j} si,j=si,ji+fi1,j,于是 f i , j = s i , j − s i , j − i ∗ i − i f_{i,j}=s_{i,j}-s_{i,j-i*i-i} fi,j=si,jsi,jiii
这一部分是 O ( n n ) O(n\sqrt n) O(nn )的。

part two

i > n i> \sqrt n i>n 时,这一部分的方案数相当于初始有一个空序列,每次要么加进去一个 n + 1 \sqrt n+1 n +1,要么序列里每个数加 1 1 1,求不同序列个数,于是考虑一个特殊的 d p dp dp,令 g i , j g_{i,j} gi,j表示序列共有 i i i个数,总和为 j j j的序列个数,有: g i , j = g i − 1 , j − n − 1 + g i , j − i g_{i,j}=g_{i-1,j-\sqrt n-1 }+g_{i,j-i} gi,j=gi1,jn 1+gi,ji
这一部分也是 O ( n n ) O(n\sqrt n) O(nn )的。

part three

最后考虑合并:
A n s = ∑ i = 0 n ∑ j = 0 n f n , i ⋅ g j , n − i Ans=\sum_{i=0}^n\sum_{j=0}^{\sqrt n}f_{\sqrt n,i} \cdot g_{j,n-i} Ans=i=0nj=0n fn ,igj,ni
还是 O ( n n ) O(n\sqrt n) O(nn )的。

因此总复杂度 O ( n n ) O(n\sqrt n) O(nn ),这边空间复杂度如果用滚动数组,并且一边算 p a r t 2 part 2 part2,一边算 p a r t 3 part3 part3,可以优化至 O ( n ) O(n) O(n)

Code

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>

#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second

using namespace std;

template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }

typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;

const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=100005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
	int f=1,x=0; char c=getchar();
	while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
	while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
	return x*f;
}
int s[2][MAXN],f[2][MAXN],g[355][MAXN];
int upd(int x,int y) { return x+y>=mods?x+y-mods:x+y; }
signed main()
{
	int n=read(),sz=floor(sqrt(n));
	f[1][0]=f[1][1]=1;
	for (int i=2;i<=sz;i++) 
		for (int j=0;j<=n;j++)
		{
			s[i&1][j]=upd((j-i>=0?s[i&1][j-i]:0),f[(i^1)&1][j]);
			f[i&1][j]=upd(s[i&1][j],mods-(j-i*i-i>=0?s[i&1][j-i*i-i]:0));
		}
	g[0][0]=1;
	for (int i=1;i<=sz;i++)
		for (int j=0;j<=n;j++) g[i][j]=upd((j>=sz+1?g[i-1][j-sz-1]:0),(j>=i?g[i][j-i]:0));
	int ans=0;
	for (int i=0;i<=n;i++) 
		for (int j=0;j<=sz;j++) ans=upd(ans,1ll*f[sz&1][i]*g[j][n-i]%mods);
	printf("%d\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值