torch基础
xmy21sunshine
这个作者很懒,什么都没留下…
展开
-
常见深度学习模型复杂度
复杂度原创 2022-10-11 15:45:39 · 220 阅读 · 0 评论 -
广播机制使用的例子:2维矩阵与3维矩阵的乘法(matmul)和 element-wise(mul)
广播机制原创 2022-06-16 17:37:35 · 1330 阅读 · 0 评论 -
利用正则表达式画loss图
import redata1_loss=[]data2_loss=[]#文件中各提取关键数值所在的位置Epoch = 0train_loss = 0train_acc = 1test_loss =2test_acc = 3f =open(“./loss.txt”, ‘r’, encoding=“utf8”)lines = f.readline()while lines:result1 = re.findall(r’\d+',lines) # 读取整数result2 = re.fi原创 2022-05-16 21:00:18 · 168 阅读 · 0 评论 -
torch.cat的用法
torch.cat 将两个tensor拼接在一起,即拼接、联系在一起的意思;使用torch.cat((A, B),dim)时,除拼接dim维对应的值不同外,其余维的数值需一致A = torch.ones(2,3)B = 2 * torch.ones(4,3)C = torch.cat((A, B),dim=0)print(C.shape)D = 2 * torch.ones(2,4)C = torch.cat((A, D),dim=1)print(C.shape)...原创 2022-04-22 14:09:23 · 215 阅读 · 0 评论