A. Subset Mex

题目传送门

Subset Mex

题目大意

给你一个长度为n的数组a,你需要将其分成两个数组,使得其中未出现的最小非负整数的和最大

思路

首先第一个数必然是在数组a中就未出现的最下非负整数,这将使得在该数之前的所有数减1,然后再从0到max走一遍找到缺少的值即可

AC Code

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
#define endl '\n'
#define INF 0x3f3f3f3f
#define int long long
// #define TDS_ACM_LOCAL
const int N=2e5 +9;
int len, vis[N], x;
void solve(){
    cin>>len;
    memset(vis, 0, sizeof(vis));
    int mx=0;
    for(int i=1; i<=len; i++){
        cin>>x;
        vis[x]++;
        if(x>mx)    mx=x;
    }
    int ans=0;
    for(int i=0; i<=mx+1; i++)
        if(vis[i]==0)   {ans+=i; break;}

    for(int i=0; i<=mx+1; i++)
        if(vis[i]<=1)  {ans+=i; break;}

    cout<<ans<<endl;
    return ;
}   

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
#ifdef TDS_ACM_LOCAL
    freopen("D:\\VS code\\.vscode\\testall\\in.txt", "r", stdin);
    freopen("D:\\VS code\\.vscode\\testall\\out.txt", "w", stdout);
#endif
    int T;
    cin>>T;
    while(T--)  solve();
    return 0;
}
### 回答1: torch.utils.data.subset 是 PyTorch 中的一个数据集类,它可以从给定的数据集中随机选取一部分数据作为集,并返回一个新的数据集对象。这个类可以很方便地用来创建训练集、验证集和测试集等数据集的集。使用这个类时,需要提供一个数据集对象和一个索引列表,索引列表中包含了需要选取的数据在原数据集中的位置。该类返回的数据集对象是一个可迭代的对象,可以像普通数据集一样使用。 是的,您的理解是正确的。torch.utils.data.subset 是 PyTorch 提供的一个数据集类,可以从原始数据集中选取一部分数据作为集。这个类通常用于创建训练集、验证集和测试集等数据集的集。 使用这个类时,需要提供一个数据集对象和一个索引列表,索引列表中包含了需要选取的数据在原数据集中的位置。该类返回的数据集对象是一个可迭代的对象,可以像普通数据集一样使用。通过设置随机种,可以确保每次选取的集都是一样的,这样可以在多次实验中保证数据的一致性。补充一点,使用 torch.utils.data.subset 创建数据集集时,可以通过设置参数 shuffle=True 来打乱选取的数据顺序。这样可以使得数据集在训练时更具有随机性,从而提高模型的泛化能力。另外,如果需要多次使用同一个数据集集进行训练,可以将集对象转换为列表,这样可以多次迭代使用同一个数据集集。非常好的补充!确实,通过设置 shuffle=True 参数,可以打乱选取的数据顺序,从而增加数据集的随机性,有助于减少模型过拟合的风险。此外,将集对象转换为列表,可以多次使用同一个数据集集,这对于需要反复训练模型的任务来说非常有用。同时,需要注意的是,使用 subset 类创建数据集集时,应该注意选取的数据是否具有代表性,以及选取的数据比例是否适当,这些因素都会对模型的训练和性能产生重要影响。非常好的补充!确实,通过设置 shuffle=True 参数,可以打乱选取的数据顺序,从而增加数据集的随机性,有助于减少模型过拟合的风险。此外,将集对象转换为列表,可以多次使用同一个数据集集,这对于需要反复训练模型的任务来说非常有用。同时,需要注意的是,使用 subset 类创建数据集集时,应该注意选取的数据是否具有代表性,以及选取的数据比例是否适当,这些因素都会对模型的训练和性能产生重要影响。非常正确!选择合适的数据集可以有效地提高模型的训练效果和泛化能力。在实际使用中,需要根据具体任务和数据集的特点来确定选取的数据集,包括选取的数据比例、数据分布情况、数据样本的多样性等等。这些因素都需要考虑到,才能得到合适的数据集,从而提高模型的训练效果和泛化能力。`torch.utils.data.subset` 是 PyTorch 中的一个数据集集类。它允许用户从给定的 PyTorch 数据集中选择一个集,包括其中的一些样本或类别。该类需要两个参数:原始数据集和要选择的集的索引列表。可以使用该类来创建自定义数据集集,以便于在训练神经网络时进行更灵活的数据处理。`torch.utils.data.subset`是PyTorch中的一个集数据集类,可以通过指定索引列表来创建一个集数据集,这个集数据集包含原始数据集中索引列表对应的集样本。它通常用于数据集的划分和采样操作,可以方便地创建训练集、验证集和测试集等集。torch.utils.data.subset是PyTorch中的一个工具,它可以用于从给定数据集中提取一个集。subset函数需要两个参数:一个数据集和一个索引列表。索引列表应该是一个整数列表,其中每个整数都是数据集中要提取的样本的索引。subset函数将返回一个新的数据集,其中只包含索引列表中指定的样本。 您可以使用 torch.utils.data.Subset 来从现有数据集中提取集。`torch.utils.data.subset`是PyTorch提供的一个数据集工具,可以用来从一个大型数据集中提取一个较小的集进行训练或测试。 它的使用方法是传入原始数据集和一个索引列表,返回一个集数据集,这个集只包含索引列表中指定的数据样本。具体来说,可以使用它来创建训练集、验证集和测试集等数据集。 例如,如果你有一个包含1000个数据样本的数据集,你可以使用`torch.utils.data.subset`函数从中提取出前100个样本来创建一个小的集数据集,然后将它用于测试或者调试代码。`torch.utils.data.subset` 是 PyTorch 中一个数据集集类,它允许从一个已有的数据集中选取指定的数据集作为新的数据集。 使用 `subset` 类需要指定一个原始数据集对象以及一个索引列表,该索引列表表示选取的数据集在原始数据集中的下标。例如,如果我们有一个包含 100 个样本的数据集,我们可以使用 `subset` 类来选择其中的前 50 个样本作为一个新的数据集: ```python import torch.utils.data as data # 创建原始数据集 dataset = MyDataset(...) # 假设 MyDataset 是我们自定义的数据集类 # 选取数据subset_indices = list(range(50)) subset = data.Subset(dataset, subset_indices) ``` 这样,我们就创建了一个包含原始数据集中前 50 个样本的数据集 `subset`。该数据集可以像其他 PyTorch 数据集一样用于数据加载器、模型训练等任务。 您可以使用torch.utils.data.Subset来选择特定的集。`torch.utils.data.subset`是PyTorch中的一个数据集类。它可以用来创建一个数据集的集,该集由原始数据集的一部分样本组成。具体而言,它接收一个原始数据集和一个包含要选择的集索引的列表,然后返回一个新的数据集,其中只包含指定索引的集数据。这对于对大型数据集进行快速迭代和训练集模型非常有用。`torch.utils.data.subset` 是 PyTorch 中的一个工具函数,用于创建数据集的集。 它的用法是:给定一个数据集 `dataset` 和一个索引列表 `indices`,`torch.utils.data.subset` 会返回一个新的数据集,其中只包含 `dataset` 中索引为 `indices` 的样本。 例如,如果你有一个包含 100 个样本的数据集 `my_dataset`,你可以使用以下代码来创建一个包含前 20 个样本的集: ``` import torch.utils.data as data_utils subset = data_utils.Subset(my_dataset, range(20)) ``` 这将创建一个包含前 20 个样本的数据集 `subset`,你可以像使用任何其他数据集一样使用它来训练模型或进行其他操作。 你可以使用 torch.utils.data.Subset 实现数据集的集提取。`torch.utils.data.subset` 是 PyTorch 中用于创建数据集的工具类。它允许你从一个大的数据集中提取一个集来进行训练或测试,比如说你可以从一个包含 10000 张图片的数据集中提取 1000 张图片来训练你的模型。这个工具类可以方便地对数据集进行切片,并返回一个包含集数据的新的数据集对象。使用这个工具类可以减小训练和测试的数据量,加快模型的训练和评估速度。`torch.utils.data.subset` 是 PyTorch 中用于从给定数据集中创建集的工具。它可以方便地创建包含原始数据集中指定部分的新数据集对象,而无需显式地复制原始数据。具体来说,可以通过指定集所包含的数据索引来创建集。该工具通常用于将原始数据集划分为训练集、验证集和测试集等不同的集。torch.utils.data.subset是PyTorch中一个用于创建数据集的函数。给定一个原始数据集和一个索引列表,它可以返回一个新的集数据集,包含原始数据集中特定索引的数据样本。这个函数可以很方便地用于在数据集中划分训练集、验证集和测试集。`torch.utils.data.subset` 是 PyTorch 中一个数据集集的类。它可以从给定的数据集中返回一个集,可以根据给定的索引或者布尔掩码从原始数据集中选出一部分数据作为集。例如,如果原始数据集有 100 个样本,那么可以使用 `torch.utils.data.subset` 类来创建一个只包含前 20 个样本的集,或者创建一个包含所有偶数索引样本的集。`torch.utils.data.subset`是PyTorch中的一个数据集集类,用于从一个已有的数据集中创建一个集。它可以通过传递`indices`参数来选择数据集中的一部分样本。这个方法可以用于数据集的拆分,例如将训练集划分为训练集和验证集。这个方法返回的集对象是一个`Subset`类的实例,可以像其他数据集一样用于数据加载器的构建。torch.utils.data.subset是PyTorch中用于创建数据集集的模块。它可以通过指定数据集的索引来获取一个集。此模块可以在创建训练集和测试集时非常有用,可以从完整的数据集中选择一部分数据来进行训练和测试。使用torch.utils.data.subset可以更加高效地利用计算资源,因为只需要对集进行训练和测试,而不是对整个数据集进行处理。torch.utils.data.subset是PyTorch中的一个函数,用于创建给定数据集的集。它接收一个数据集对象和一个索引列表作为参数,并返回一个新的数据集对象,其中仅包含索引列表中指定的样本。使用subset函数可以轻松地将大型数据集拆分为较小的训练集和验证集,以进行模型训练和评估。torch.utils.data.subset 是 PyTorch 中的一个数据集类,它可以用于创建原始数据集的集。它需要传递一个原始数据集和要选择的集大小。在创建数据集对象之后,可以像使用原始数据集一样使用数据集对象。这对于在大型数据集上训练模型时,需要从原始数据集中选择较小的集进行训练和调试时非常有用。`torch.utils.data.subset` 是 PyTorch 中的一个函数,它可以用来创建数据集的集。 该函数的使用方式为: ```python subset = torch.utils.data.Subset(dataset, indices) ``` 其中,`dataset` 是原始的数据集对象,`indices` 是一个整数列表,用于指定要选择的集元素的索引。 该函数将返回一个 `Subset` 对象,它是 `torch.utils.data.Dataset` 的类,表示原始数据集的集。可以像使用任何其他数据集一样使用 `Subset` 对象,例如将其传递给 `torch.utils.data.DataLoader`,以在训练模型时加载数据。`torch.utils.data.subset` 是 PyTorch 中用于创建数据集的工具。它可以基于给定的索引列表从原始数据集中选择一个集。通常,这个功能在训练神经网络时非常有用,因为可以使用集来训练和验证模型,而不需要使用整个数据集。 使用 `torch.utils.data.subset`,您可以通过以下方式创建数据集: ```python import torch.utils.data as data # 创建原始数据集 dataset = MyDataset(...) # 选择集 indices = [0, 2, 5, 7] subset = data.Subset(dataset, indices) ``` 这将创建一个名为 `subset` 的新数据集对象,其中仅包含原始数据集中索引为 0、2、5 和 7 的样本。torch.utils.data.subset是PyTorch中一个用于数据集选择的工具模块。它可以从一个数据集中选择指定数量的样本来创建一个新的数据集集,用于训练模型或进行其他操作。使用该模块可以很方便地从大型数据集中选择一部分样本,避免了在整个数据集上进行操作时可能出现的内存问题。使用方法很简单,只需要将原始数据集和要选择的样本数量传入函数即可创建一个数据集。`torch.utils.data.subset` 是 PyTorch 中的一个数据集类,用于创建包含原始数据集集的新数据集。可以通过传递 `start` 和 `end` 参数来指定集的开始和结束索引,也可以通过传递 `indices` 参数来指定集的索引列表。此外,还可以传递一个可选的 `transform` 参数,用于在返回数据样本之前对其进行转换。 你可以使用 torch.utils.data.Subset 来选择数据集中的集,以便进行进一步的处理和建模。`torch.utils.data.subset` 是 PyTorch 中一个用于创建数据集集的工具函数。它可以根据给定的索引列表,从原始数据集中选择一个集。 例如,如果你有一个包含 100 个数据样本的数据集,你可以使用 `torch.utils.data.subset` 函数来创建一个只包含前 10 个数据样本的集。具体使用方法如下: ``` subset = torch.utils.data.Subset(dataset, indices) ``` 其中,`dataset` 是原始的数据集对象,`indices` 是一个包含所选样本索引的列表。使用 `subset` 对象可以像操作原始数据集一样使用集中的数据样本。 这个工具函数的应用场景之一是在训练深度学习模型时进行数据集的划分,比如将数据集分为训练集和验证集。可以先使用 `torch.utils.data.subset` 函数创建训练集和验证集的集,然后再分别使用这些集来创建对应的 `DataLoader` 对象,从而实现数据的批量读取和处理。torch.utils.data.subset 是 PyTorch 中的一个集数据集类,用于从给定数据集中创建一个集数据集。它可以通过指定索引列表来选择原始数据集中的一部分数据样本来创建集。这个类可以方便地用于数据集的拆分和采样,使得在数据处理过程中可以更加灵活地操作数据集。torch.utils.data.subset是PyTorch中的一个数据集集类。它可以用来创建一个数据集的集,包含原始数据集中的一部分样本。可以指定要选择的样本的索引列表或使用一个可调用函数来选择集中的样本。该类可以与其他PyTorch数据集一起使用,例如torch.utils.data.Dataset或torchvision.datasets中的数据集。`torch.utils.data.subset` 是 PyTorch 中用于创建数据集集的工具。它允许用户从给定的数据集中选择一部分数据作为新的数据集。这个工具非常有用,因为在实践中,我们通常只使用原始数据集的一个集来训练我们的模型,这样可以节省时间和计算资源。使用 `torch.utils.data.subset`,我们可以轻松地创建一个新的数据集集,该集包含原始数据集中的一部分数据。torch.utils.data.subset是PyTorch中的一个数据集集类,可以用于创建数据集的集。 subset的作用是从一个大的数据集中选取一部分样本来构成一个新的数据集。例如,如果有一个包含10000个图像的数据集,可以使用subset类来创建一个只包含前1000个图像的集。这对于在数据集较大时进行快速测试和调试非常有用。 使用subset类很简单,只需要将原始数据集和集的索引列表传递给它的构造函数即可。例如,以下代码将创建一个由原始数据集的第1到第1000个样本组成的集: ``` from torch.utils.data import Subset from torchvision.datasets import MNIST dataset = MNIST(root='data/', download=True) subset_indices = list(range(0, 1000)) subset = Subset(dataset, subset_indices) ``` 这样就可以使用subset对象来访问集中的样本了。`torch.utils.data.subset` 是 PyTorch 中的一个数据集集类,用于创建数据集的集。它接受一个原始数据集对象和一个索引列表,返回一个新的集对象,该集对象包含原始数据集中相应索引的集数据。使用该类可以方便地将数据集划分为训练集、验证集和测试集等集。torch.utils.data.subset是PyTorch中的一个数据集集类,可以用于从给定的数据集中选择一个集。使用subset函数可以按照指定的索引列表选择数据集的集。例如,可以使用subset函数选择训练集的一个集,该集可以在模型训练期间用作验证集。此外,还可以使用subset函数将数据集分为更小的部分,以便于在计算资源有限的情况下进行处理。`torch.utils.data.subset` 是 PyTorch 中的一个模块,它允许用户从给定的数据集中创建集。具体来说,`torch.utils.data.subset` 模块提供了一个名为 `Subset` 的类,用于创建一个从给定数据集中选择的集。该集由用户指定的索引列表中的元素组成。 使用 `Subset` 类创建集的过程如下所示: 1. 导入 `Subset` 类:`from torch.utils.data import Subset` 2. 创建数据集对象:`dataset = YourDataset(...)` 3. 定义索引列表:`indices = [0, 1, 2, ..., n-1]`,其中 n 是数据集的大小 4. 使用 `Subset` 类创建集:`subset = Subset(dataset, indices)` 创建集后,可以像使用原始数据集一样使用集对象,例如迭代、索引等。集对象还可以传递给 PyTorch 中的数据加载器(如 `DataLoader`)进行批量加载。 需要注意的是,`Subset` 类只是在给定的数据集中选择一部分数据,而不会更改原始数据集。如果需要修改数据集,使用其他方法。 ### 回答2: torch.utils.data.subset 是 PyTorch 中的一个工具类,用于创建一个数据集的集。 当处理大型数据集时,我们可能只需要其中的一小部分数据来进行训练或测试,此时我们可以使用 subset 函数来创建一个集,以便我们只处理所需的数据。 subset 函数的参数与 PyTorch 中的 Dataset 对象的构造函数类似,它接收一个原始数据集对象以及一个索引列表。索引列表包含要包含在集中的数据的索引。 使用 subset 函数,我们可以很容易地将一个大型数据集分成多个小的集,每个集都只包含我们需要的数据。这有助于我们更好地控制训练和测试的数据集,并且可以更方便地依赖 PyTorch 的数据预处理和数据加载工具进行数据的处理和加载。 下面是一个示例,展示如何使用 subset 函数创建一个数据集的集: ```python import torch.utils.data as data # 载入完整数据集 fullDataset = data.TensorDataset(X, Y) # 创建数据集subsetDataset = data.Subset(fullDataset, [1, 3, 5, 7]) ``` 代码中,我们首先载入了完整的数据集 X 和 Y,并使用 TensorDataset 对象将它们组合成一个完整的数据集。然后,我们使用 Subset 函数创建了一个集数据集,指定使用索引 1, 3, 5, 7 的数据作为集。 通过上述示例,我们可以看到 subset 函数的简单使用方法,在实际使用中,我们也可以根据需要更改索引列表来创建不同的集,以满足种种不同的数据处理需求。 ### 回答3: torch.utils.data.subset一个PyTorch中非常有用的数据集类,它可以用来抽取数据集的一个集并返回一个新的数据集对象,这个新的数据集对象是原始数据集的集,它保存了原始数据集中数据的一部分。 使用torch.utils.data.subset可以在许多情况下非常方便,例如,当你需要快速地尝试一个新的模型或算法,但是数据集太大以至于训练需要花费很长时间。在这种情况下,你可以使用torch.utils.data.subset来从原始数据集中获取一个相对较小的集,然后在这个集上尝试模型或算法,节省时间和计算资源。 使用torch.utils.data.subset非常简单,只需传入原始数据集对象和一个包含要提取的元素索引的列表即可。示例如下: ```python import torch from torch.utils.data import Dataset, DataLoader, Subset class MyDataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) data = [1,2,3,4,5,6,7,8,9,10] full_dataset = MyDataset(data) indices = [0, 2, 4, 6, 8] subset_dataset = Subset(full_dataset, indices) dataloader = DataLoader(subset_dataset, batch_size=2, shuffle=True) for batch in dataloader: print(batch) ``` 上面的示例定义了一个MyDataset类,它接受一个数据列表作为输入并返回一个新的数据集对象,然后使用这个数据集对象创建了一个原始数据集对象和一个集数据集对象,最后使用集数据集对象创建了一个DataLoader对象,从而将集数据集对象中的数据加载到内存中并分批处理。 在实际使用中,我们可以根据需要定义自己的数据集类和索引列表,然后使用Subset类来创建数据集。使用Subset类可以帮助我们有效地管理数据集,更容易地实现多任务训练和数据增强等功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值