【算法题】Leedcode 72

37 篇文章 0 订阅
22 篇文章 0 订阅

【算法题】Leedcode 72. Edit Distance字符串转换步数最优解问题

题目链接: https://leetcode.com/problems/edit-distance/

解法参考: http://www.bubuko.com/infodetail-644271.html

http://blog.sina.com.cn/s/blog_6f611c300101f72q.html

http://blog.csdn.net/feliciafay/article/details/17502919


题目:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

两个字符串通过插入、删除、替换一个字符的操作变得一样,求最少的步数。


思路:动态规划


具体算法:首先给定第一行和第一列,然后,每个值d[i,j]这样计算:

d[i][j]   =   min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+(s1[i]  ==  s2[j]?0:1));   

解释:

用d[i][j]表示从word1[i]变为word2[j]所需要的最少步骤,word[i] 表示word的0~i的子字符串。

最后第二步到最后一步会有三种情况(4种操作):

1) 匹配(无操作或替换):即word1[i-1] = word2[j-1] , 则如果两个字符串的最后一个字符相同则不需要操作,操作数为d[i-1][j-1]+0;

                                                                                                                            ……不一样则执行替换操作,操作数为d[i-1][j-1]+1.

3) 少一位(插入):  即word1[i] = word2[j-1],则 word1 插入 word2 的最后一个字符,操作数d[i][j-1]+1.

4) 多一位(删除):  即word1[i-1] = word2[j],则 word1 删除最后一个字符,操作数d[i-1][j]+1.

当前步数最优解则为三种情况的最小值: d[i][j]   =   min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+(s1[i]  ==  s2[j]?0:1));   


例如:abca和cba最优解为2步:


   #  a  b  c  a
# 0  1  2  3  4
c 1  1  2  2  3
b 2  2  1  2  3
a 3  3  2  2  2


代码:

 public int minDistance(String word1, String word2) {
		int len1 = word1.length();
		int len2 = word2.length();
		int d[][] = new int[len1 + 1][len2 + 1];

		for (int i = 0; i < len1 + 1; i++) {
			for (int j = 0; j < len2 + 1; j++) {
				if (i * j == 0) {
					d[i][j] = i == 0 ? j : i;
				} else if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
					d[i][j] = d[i - 1][j - 1];
				} else {
					d[i][j] = min(d[i - 1][j - 1], d[i - 1][j], d[i][j - 1]) + 1;
				}
			}
		}
		
		return d[len1][len2];
	}
	
	public int min(int ...is){
		int min = is[0];
		for (int n: is){
			min = min <= n ? min : n;
		}
		return min;
	}


精简版(公式):

public int minDistance(String word1, String word2) {
		int len1 = word1.length();
		int len2 = word2.length();
		int d[][] = new int[len1 + 1][len2 + 1];

		for (int i = 0; i < len1 + 1; i++) {
			for (int j = 0; j < len2 + 1; j++) {
				if (i * j == 0) {
					d[i][j] = i == 0 ? j : i;
				} else {
					d[i][j] = min((word1.charAt(i - 1) == word2.charAt(j - 1) ? d[i - 1][j - 1] : d[i - 1][j - 1] + 1),
							d[i - 1][j] + 1, d[i][j - 1] + 1);
				}
			}
		}

		return d[len1][len2];
	}



另:

其他思路:最大匹配子串、递归处理、范围限制查找等等

参考:

http://blog.csdn.net/sunnyyoona/article/details/43853383

http://blog.unieagle.net/2012/09/19/leetcode%E9%A2%98%E7%9B%AE%EF%BC%9Aedit-distance%EF%BC%8C%E5%AD%97%E7%AC%A6%E4%B8%B2%E4%B9%8B%E9%97%B4%E7%9A%84%E7%BC%96%E8%BE%91%E8%B7%9D%E7%A6%BB%EF%BC%8C%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值